A tighter upper bound for random MAX 2-SAT

被引:4
|
作者
Xu, XueLin [1 ,2 ]
Gao, ZongSheng [1 ,2 ]
Xu, Ke [3 ]
机构
[1] Beihang Univ, LMIB, Beijing 100191, Peoples R China
[2] Beihang Univ, Sch Math & Syst Sci, Beijing 100191, Peoples R China
[3] Beihang Univ, State Key Lab Software Dev Environm, Beijing 100191, Peoples R China
关键词
MAX; 2-SAT; Upper bound; First-moment argument; Computational complexity; ALGORITHM; SAT;
D O I
10.1016/j.ipl.2010.11.002
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Given a conjunctive normal form F with n variables and m =cn 2-clauses, it is interesting to study the maximum number max F of clauses satisfied by all the assignments of the variables (MAX 2-SAT). When c is sufficiently large, the upper bound of f (n, cn) = E(max F) of random MAX 2-SAT had been derived by the first-moment argument. In this paper, we provide a tighter upper bound (3/4)cn + g(c)cn also using the first-moment argument but correcting the error items for f (n.cn), and g(c)= (3/4) cos((1/3) x arccos((4In 2)/c - 1)) - 3/8 when considering the epsilon(3) error item. Furthermore, we extrapolate the region of the validity of the first-moment method is c > 2.4094 by analyzing the higher order error items. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:115 / 119
页数:5
相关论文
共 50 条
  • [1] Random 2-SAT and unsatisfiability
    Verhoeven, Y
    INFORMATION PROCESSING LETTERS, 1999, 72 (3-4) : 119 - 123
  • [2] A remark on random 2-SAT
    Goerdt, A
    DISCRETE APPLIED MATHEMATICS, 1999, 97 : 107 - 110
  • [3] Random 2-SAT and unsatisfiability
    Verhoeven, Yann
    Information Processing Letters, 1999, 72 (03): : 119 - 123
  • [4] Random 2-SAT: results and problems
    de la Vega, WF
    THEORETICAL COMPUTER SCIENCE, 2001, 265 (1-2) : 131 - 146
  • [5] Research on the Solution Space of 2-SAT and Max-2-SAT
    Li, Bai-Feng
    Wei-Wei
    Liu, Chao-Qun
    3RD ANNUAL INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND APPLICATIONS (ITA 2016), 2016, 7
  • [6] Max 2-SAT with up to 108 qubits
    Santra, Siddhartha
    Quiroz, Gregory
    Steeg, Greg Ver
    Lidar, Daniel A.
    NEW JOURNAL OF PHYSICS, 2014, 16
  • [7] Exact MAX 2-SAT: Easier and faster
    Furer, Martin
    Kasiviswanathan, Shiva Prasad
    SOFSEM 2007: THEORY AND PRACTICE OF COMPUTER SCIENCE, PROCEEDINGS, 2007, 4362 : 272 - +
  • [8] Balanced Max 2-Sat Might Not be the Hardest
    Austrin, Per
    STOC 07: PROCEEDINGS OF THE 39TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, 2007, : 189 - 197
  • [9] Random 2-SAT with Prescribed Literal Degrees
    Colin Cooper
    Alan Frieze
    Gregory B. Sorkin
    Algorithmica, 2007, 48 : 249 - 265
  • [10] Random 2-SAT with prescribed literal degrees
    Cooper, Colin
    Frieze, Alan
    Sorkin, Gregory B.
    ALGORITHMICA, 2007, 48 (03) : 249 - 265