Crowding clustering genetic algorithm for multimodal function optimization

被引:59
|
作者
Ling, Qing
Wu, Gang
Yang, Zaiyue
Wang, Qiuping
机构
[1] Univ Sci & Technol China, Dept Automat, Hefei 230026, Peoples R China
[2] Univ Hong Kong, Dept Mech Engn, Hong Kong, Peoples R China
[3] Univ Sci & Technol China, Natl Synchrotron Radiat Lab, Hefei 230026, Peoples R China
关键词
multimodal function optimization; crowding clustering genetic algorithm; evolutionary computation; genetic drift; varied line-spacing holographic grating;
D O I
10.1016/j.asoc.2006.10.014
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Interest in multimodal function optimization is expanding rapidly since real-world optimization problems often require location of multiple optima in a search space. In this paper, we propose a novel genetic algorithm which combines crowding and clustering for multimodal function optimization, and analyze convergence properties of the algorithm. The crowding clustering genetic algorithm employs standard crowding strategy to form multiple niches and clustering operation to eliminate genetic drift. Numerical experiments on standard test functions indicate that crowding clustering genetic algorithm is superior to both standard crowding and deterministic crowding in quantity, quality and precision of multi-optimum search. The proposed algorithm is applied to the practical optimal design of varied-line-spacing holographic grating and achieves satisfactory results. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:88 / 95
页数:8
相关论文
共 50 条
  • [1] Crowding clustering genetic algorithm for multimodal function optimization
    Ling, Qing
    Wu, Gang
    Yang, Zaiyue
    Wang, Qiuping
    [J]. DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2006, 13E : 349 - 354
  • [2] A genetic algorithm with SOM neural network clustering for multimodal function optimization
    Kashtiban, Atabak Mashhadi
    Khanmohammadi, Sohrab
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2018, 35 (04) : 4543 - 4556
  • [3] A density clustering based niching Genetic Algorithm for multimodal optimization
    Yang, HZ
    Li, FC
    Wang, CM
    [J]. PROCEEDINGS OF 2005 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-9, 2005, : 1599 - 1604
  • [4] A genetic algorithm with dynamic niche clustering for multimodal function optimisation
    Gan, J
    Warwick, K
    [J]. ARTIFICIAL NEURAL NETS AND GENETIC ALGORITHMS, 1999, : 248 - 255
  • [5] An adaptive niche genetic algorithm for multimodal function optimization
    Lu, Qing
    Liang, Chang-Yong
    Yang, Shan-Lin
    Zhang, Jun-Ling
    [J]. Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2009, 22 (01): : 91 - 100
  • [6] A powerful modified Genetic Algorithm for multimodal function optimization
    Guo, ZJ
    Zheng, HT
    Jiang, JP
    [J]. PROCEEDINGS OF THE 2002 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2002, 1-6 : 3168 - 3173
  • [7] A species conserving genetic algorithm for multimodal function optimization
    Li, JP
    Balazs, ME
    Parks, GT
    Clarkson, PJ
    [J]. EVOLUTIONARY COMPUTATION, 2002, 10 (03) : 207 - 234
  • [8] A Multimodal Adaptive Genetic Clustering Algorithm
    Al-Malak, Sawsan
    Hosny, Manar
    [J]. PROCEEDINGS OF THE 2016 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'16 COMPANION), 2016, : 1453 - 1454
  • [9] Multimodal function optimization with a niching genetic algorithm: A seismological example
    Koper, KD
    Wysession, ME
    Wiens, DA
    [J]. BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 1999, 89 (04) : 978 - 988
  • [10] A heuristic immune-genetic algorithm for multimodal function optimization
    Li, Yua nyuan
    Dai, Yongshou
    Ma, Xigeng
    [J]. INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE FOR MODELLING, CONTROL & AUTOMATION JOINTLY WITH INTERNATIONAL CONFERENCE ON INTELLIGENT AGENTS, WEB TECHNOLOGIES & INTERNET COMMERCE, VOL 2, PROCEEDINGS, 2006, : 36 - 40