Weakly symmetric groups of Heisenberg type

被引:12
|
作者
Berndt, J
Ricci, F
Vanhecke, L
机构
[1] Univ Hull, Dept Math, Kingston Upon Hull HU6 7RX, N Humberside, England
[2] Politecn Torino, Dipartimento Matemat, I-10129 Turin, Italy
[3] Katholieke Univ Leuven, Dept Math, B-3001 Heverlee, Belgium
关键词
H-type groups; generalized Heisenberg groups; weakly symmetric spaces; commutative spaces;
D O I
10.1016/S0926-2245(98)00014-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that an H-type group is weakly symmetric if and only if it is commutative. As a consequence we get the classification of all weakly symmetric H-type groups.
引用
收藏
页码:275 / 284
页数:10
相关论文
共 50 条
  • [1] An approach to symmetric spaces of rank one via groups of Heisenberg type
    Michael Cowling
    Anthony Dooley
    Adam Korányi
    Fulvio Ricci
    [J]. The Journal of Geometric Analysis, 1998, 8 (2): : 199 - 237
  • [2] On Generalized Heisenberg Groups: The Symmetric Case
    Kritsada Sangkhanan
    Teerapong Suksumran
    [J]. Results in Mathematics, 2018, 73
  • [3] On Generalized Heisenberg Groups: The Symmetric Case
    Sangkhanan, Kritsada
    Suksumran, Teerapong
    [J]. RESULTS IN MATHEMATICS, 2018, 73 (03)
  • [4] WEAKLY SYMMETRIC MEASURES ON UNIMODULAR GROUPS
    TUTUBALIN, VN
    [J]. VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1990, (02): : 14 - 21
  • [5] STRUCTURE OF GEODESICS IN WEAKLY SYMMETRIC FINSLER METRICS ON H-TYPE GROUPS
    Dusek, Zdenek
    [J]. ARCHIVUM MATHEMATICUM, 2020, 56 (05): : 265 - 275
  • [6] ON THE GEOMETRY OF GROUPS OF HEISENBERG TYPE
    KAPLAN, A
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1983, 15 (JAN) : 35 - 42
  • [7] MINIMALITY IN TOPOLOGICAL GROUPS AND HEISENBERG TYPE GROUPS
    Shlossberg, Menachem
    [J]. TOPOLOGY PROCEEDINGS, VOL 35, 2010, 35 : 331 - 344
  • [8] Electron paramagnetic resonance in weakly anisotropic Heisenberg magnets with a symmetric anisotropy
    Choukroun, J
    Richard, JL
    Stepanov, A
    [J]. PHYSICAL REVIEW B, 2003, 68 (14)
  • [9] Weakly symmetric algebras of Euclidean type
    Bocian, R
    Skowronski, A
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2005, 580 : 157 - 199
  • [10] The oscillator representation and groups of Heisenberg type
    Galina, E
    Kaplan, A
    Levstein, F
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 210 (02) : 309 - 321