On the solvability of one boundary value problem for some semilinear wave equations with source terms

被引:3
|
作者
Kharibegashvili, Sergo [1 ,2 ]
Midodashvili, Bidzina [3 ]
机构
[1] A Razmadze Math Inst, GE-0193 Tbilisi, Georgia
[2] Georgian Tech Univ, Dept Math, GE-0175 Tbilisi, Georgia
[3] I Javakhishvili Tbilisi State Univ, GE-0143 Tbilisi, Georgia
关键词
Sobolev problem; Semilinear wave equations; Source terms; Global and local solvability; Nonexistence; CAUCHY CHARACTERISTIC PROBLEM; GLOBAL-SOLUTIONS; BLOW-UP; MULTIDIMENSIONAL VERSION; DARBOUX PROBLEM; NONEXISTENCE; EXISTENCE; ABSENCE;
D O I
10.1007/s00030-010-0087-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In a conic domain of time type for one class of semilinear wave equations with source terms we consider a Sobolev problem representing a multidimensional version of the Darboux second problem. The questions on global and local solvability, uniqueness and absence of solutions of this problem are investigated.
引用
收藏
页码:117 / 138
页数:22
相关论文
共 50 条