On principal Hessian directions for multivariate response regressions

被引:10
|
作者
Lue, Heng-Hui [1 ]
机构
[1] Tunghai Univ, Dept Stat, Taichung 40704, Taiwan
关键词
Canonical correlation; Central mean subspace; Dimension reduction; Multivariate response; Principal component analysis; Principal Hessian directions; Sliced inverse regression; SLICED INVERSE REGRESSION; SUFFICIENT DIMENSION REDUCTION; VISUALIZATION;
D O I
10.1007/s00180-010-0192-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a multivariate response regression analysis with a vector of predictors. In this article, we develop the modification of principal Hessian directions based on principal components for estimating the central mean subspace without requiring a prespecified parametric model. We use a permutation test suggested by Cook and Yin (Aust New Z J Stat 43:147-199, 2001) for inference about the dimension. Simulation results and one real data are reported, and comparisons are made with four methods-most predictable variates, k-means inverse regression, optimal method of Yoo and Cook (Biometrika 94:231-242, 2007) and canonical correlation approach.
引用
收藏
页码:619 / 632
页数:14
相关论文
共 50 条