The Intracellular Amino Terminus Plays a Dominant Role in Desensitization of ATP-gated P2X Receptor Ion Channels

被引:33
|
作者
Allsopp, Rebecca C. [1 ]
Evans, Richard J. [1 ]
机构
[1] Univ Leicester, Dept Cell Physiol & Pharmacol, Leicester LE1 9HN, Leics, England
基金
英国惠康基金;
关键词
FIRST TRANSMEMBRANE DOMAIN; SMOOTH-MUSCLE; CATION CHANNELS; ACTIVATION; CELLS; PORE; IDENTIFICATION; MUTAGENESIS; EXPRESSION; RESPONSES;
D O I
10.1074/jbc.M111.303917
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
P2X receptors show marked variations in the time-course of response to ATP application from rapidly desensitizing P2X1 receptors to relatively sustained P2X2 receptors. In this study we have used chimeras between human P2X1 and P2X2 receptors in combination with mutagenesis to address the contribution of the extracellular ligand binding loop, the transmembrane channel, and the intracellular regions to receptor time-course. Swapping either the extracellular loop or both transmembrane domains (TM1 and -2) between the P2X1 and P2X2 receptors had no effect on the time-course of ATP currents in the recipient receptor. These results suggest that the agonist binding and channel-forming portions of the receptor do not play a major role in the control of the time-course. In contrast replacing the amino terminus of the P2X1 receptor with that from the non-desensitizing P2X2 receptor (P2X1-2N) slowed desensitization, and the mirror chimera induced rapid desensitization in the P2X2-1N chimera. These reciprocal effects on time-course can be replicated by changing four variant amino acids just before the first transmembrane (TM1) segment. These pre-TM1 residues also had a dominant effect on chimeras where both TMs had been transferred; mutating the variant amino acids 21-23 to those found in the P2X2 receptor removed desensitization from the P2X1-2TM1/-2 chimera, and the reciprocal mutants induced rapid desensitization in the non-desensitizing P2X2-1TM1/-2 chimera. These results suggest that the intracellular amino terminus, in particular the region just before TM1, plays a dominant role in the regulation of the time-course of ATP evoked P2X receptor currents.
引用
收藏
页码:44691 / 44701
页数:11
相关论文
共 50 条
  • [1] Molecular properties of ATP-gated P2X receptor ion channels
    Vial, C
    Roberts, JA
    Evans, RJ
    [J]. TRENDS IN PHARMACOLOGICAL SCIENCES, 2004, 25 (09) : 487 - 493
  • [2] ATP-gated P2X channels
    Girdler, G
    Khakh, BS
    [J]. CURRENT BIOLOGY, 2004, 14 (01) : R6 - R6
  • [3] Potential therapeutic targets for ATP-Gated P2X receptor ion channels
    Li, Zhiyuan
    Liang, Dong
    Chen, Ling
    [J]. ASSAY AND DRUG DEVELOPMENT TECHNOLOGIES, 2008, 6 (02) : 277 - 284
  • [4] MAPPING "MISSING" CONFORMATIONS OF ATP-GATED P2X RECEPTOR ION CHANNELS
    Stavrou, A.
    Schmid, R.
    Evans, R. J.
    [J]. PURINERGIC SIGNALLING, 2018, 14 : S98 - S98
  • [5] Extracellular ATP-Gated P2X purinergic receptor channels
    Boyce, AT
    Schwiebert, EM
    [J]. EXTRACELLULAR NUCLEOTIDES AND NUCLEOSIDES: RELEASE, RECEPTORS, AND PHYSIOLOGICAL AND PATHOPHYSIOLOGICAL EFFECTS, 2003, 54 : 97 - 150
  • [6] Allosteric modulation of ATP-gated P2X receptor channels
    Coddou, Claudio
    Stojilkovic, Stanko S.
    Pablo Huidobro-Toro, J.
    [J]. REVIEWS IN THE NEUROSCIENCES, 2011, 22 (03) : 335 - 354
  • [7] ATP-gated P2X cation-channels
    Jarvis, Michael F.
    Khakh, Baljit S.
    [J]. NEUROPHARMACOLOGY, 2009, 56 (01) : 208 - 215
  • [8] Membrane topology of an ATP-gated ion channel (P2X receptor)
    Newbolt, A
    Stoop, R
    Virginio, C
    Surprenant, A
    North, RA
    Buell, G
    Rassendren, F
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (24) : 15177 - 15182
  • [9] ATP-Gated P2X Receptor Channels: Molecular Insights into Functional Roles
    Schmid, Ralf
    Evans, Richard J.
    [J]. ANNUAL REVIEW OF PHYSIOLOGY, VOL 81, 2019, 81 : 43 - 62
  • [10] ATP-gated P2X receptors: a new family of ligand-gated ion channels
    Surprenant, A
    [J]. MOLECULAR MECHANISMS OF TRANSCELLULAR SIGNALING: FROM MEMBRANE RECEPTORS TO TRANSCRIPTION FACTORS, 1999, 309 : 1 - 13