Isotope and interband effects in a multi-band model of superconductivity

被引:12
|
作者
Bussmann-Holder, A. [1 ]
Keller, H. [2 ]
Khasanov, R. [3 ]
Simon, A. [1 ]
Bianconi, A. [4 ]
Bishop, A. R. [5 ]
机构
[1] Max Planck Inst Festkorperforsch, D-70569 Stuttgart, Germany
[2] Univ Zurich, Inst Phys, CH-8057 Zurich, Switzerland
[3] Paul Scherrer Inst, Lab Muon Spin Spect, CH-5232 Villigen, Switzerland
[4] Univ Roma La Sapienza, Dept Phys, I-00185 Rome, Italy
[5] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
来源
NEW JOURNAL OF PHYSICS | 2011年 / 13卷
基金
瑞士国家科学基金会;
关键词
S-WAVE; ORIGIN; PHASE; GAPS;
D O I
10.1088/1367-2630/13/9/093009
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Isotope effects (IEs) are essential in determining the pairing mechanism in superconductors. Whereas for Bardeen-Cooper-Schrieffer (BCS)-type superconductors, a clear consensus about IE exists, this is unknown in multiband superconductors (MBSs). We demonstrate here that for MBSs the IEs on the superconducting transition temperature can vary between the BCS value and zero as long as the intraband couplings are affected. It can, however, exceed the BCS value when interband effects are dominant. In both cases, a sign reversal is excluded. In addition, we show that interband coupling contributes substantially to enhancement of T-c. The results are independent of the pairing symmetry and the system-specific band structure. Specifically, we do not address the IEs originating from the MBSs with respect to a specific superconductor, but rather study its emergence within this model and explore all possible sources within the weak coupling theory.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Vortex molecule, fractional flux quanta, and interband phase difference soliton in multi-band superconductivity and multicomponent superconductivity
    Tanaka, Y.
    Shivagan, D. D.
    Crisan, A.
    Iyo, A.
    Shirage, P. M.
    Tokiwa, K.
    Watanabe, T.
    Terada, N.
    25TH INTERNATIONAL CONFERENCE ON LOW TEMPERATURE PHYSICS (LT25), PT 5A: SUPERCONDUCTIVITY, 2009, 150 (5a):
  • [2] Multi-Band Superconductivity and the Steep Band/Flat Band Scenario
    Bussmann-Holder, Annette
    Keller, Hugo
    Simon, Arndt
    Bianconi, Antonio
    CONDENSED MATTER, 2019, 4 (04):
  • [3] Multi-band simulation of interband tunneling devices reflecting realistic band structure
    Ogawa, M
    Tominaga, R
    Miyoshi, T
    2000 INTERNATIONAL CONFERENCE ON SIMULATION OF SEMICONDUCTOR PROCESSES AND DEVICES, 2000, : 66 - 69
  • [4] Multi-band simulation of quantum transport in resonant interband tunneling devices
    Ogawa, M
    Sugano, T
    Miyoshi, T
    PHYSICA E, 2000, 7 (3-4): : 840 - 845
  • [5] Unconventional superconductivity with either multi-component or multi-band, or with chirality
    Machida, K
    Ichioka, M
    Takigawa, M
    Nakai, N
    RUTHENATE AND RUTHENO-CUPRATE MATERIALS: UNCONVENTIONAL SUPERCONDUCTIVITY, MAGNETISM AND QUANTUM PHASE TRANSITIONS, 2002, 603 : 32 - 45
  • [6] A two band model for superconductivity: Probing interband pair formation
    Lagos, RE
    Cabrera, GG
    BRAZILIAN JOURNAL OF PHYSICS, 2003, 33 (04) : 713 - 717
  • [7] Polaron Formation and Multi-Band Multi-Gap Superconductivity in Layered Materials
    Bussmann-Holder, Annette
    Keller, Hugo
    WOMEN IN PHYSICS, 2013, 1517 : 224 - 224
  • [8] Effects of paramagnetic pair-breaking and spin-orbital coupling on multi-band superconductivity
    Ayino, Yilikal
    Yue, Jin
    Wang, Tianqi
    Jalan, Bharat
    Pribiag, Vlad S.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2020, 32 (38)
  • [9] Multi-band Monte Carlo method using anisotropic-analytical multi-band model
    Yamaji, M
    Taniguchi, K
    Hamaguchi, C
    SISPAD '96 - 1996 INTERNATIONAL CONFERENCE ON SIMULATION OF SEMICONDUCTOR PROCESSES AND DEVICES, 1996, : 63 - 64
  • [10] Mechanism for enhancement of superconductivity in multi-band systems with odd parity hybridization
    Continentino, M. A.
    Padilha, Igor T.
    Caldas, Heron
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2014,