Stochastic resonance in a discrete time nonlinear SETAR(1,2,0,0) model

被引:0
|
作者
Zozor, S
Amblard, PO
机构
关键词
D O I
10.1109/HOST.1997.613509
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present in this paper the stochastic resonance phenomenon in a discrete rime context. indeed, stochastic resonance has been commonly investigated in continuous-time. Analytical results given by a simple bistable nonlinear SETAR(1, 2, 0, 0) are studied. Then, the ability of such a system to be used in signal processing is discussed.
引用
收藏
页码:166 / 170
页数:5
相关论文
共 50 条
  • [1] Stochastic resonance in discrete time nonlinear AR(1) models
    Zozor, S
    Amblard, PO
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1999, 47 (01) : 108 - 122
  • [2] A nonlinear stochastic growth model on discrete time domains
    Atici, Ferhan M.
    Cheng, Gang
    Lebedinsky, Alex
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2016, 22 (11) : 1732 - 1746
  • [3] A THEORETICAL STOCHASTIC-MODEL FOR THE A+B-1/2(2)-]0 REACTION
    MAI, J
    KUZOVKOV, VN
    VONNIESSEN, W
    JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (12): : 10017 - 10025
  • [4] 2-dimensional stochastic resonance in a discrete time nonlinear system with a noisy elliptic input
    Zozor, S
    Amblard, RO
    PROCEEDINGS OF THE IEEE-EURASIP WORKSHOP ON NONLINEAR SIGNAL AND IMAGE PROCESSING (NSIP'99), 1999, : 95 - 99
  • [5] Precise Study of the Resonance at Q0 = (1,0,0) in URu2Si2
    Bourdarot, Frederic
    Hassinger, Elena
    Raymond, Stephane
    Aoki, Dai
    Taufour, Valentin
    Regnault, Louis-Pierre
    Flouquet, Jacques
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2010, 79 (06)
  • [6] NONLINEAR FUNCTIONALS ON C([0, 1] X [0, 1])
    BAXTER, JR
    CHACON, RV
    PACIFIC JOURNAL OF MATHEMATICS, 1973, 48 (02) : 347 - 353
  • [7] Stochastic resonance in discrete time nonlinear AR(1) models (vol 47, pg 108, 1999)
    Zozor, S
    Amblard, PO
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2001, 49 (05) : 1107 - 1109
  • [8] h-stability-based 1 2-1 0, state estimation of discrete-time nonlinear systems with time-varying delays
    Zhang, Huan
    Zhang, Xian
    Yu, Tianqiu
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2024, 361 (10):
  • [9] The (iω0)2iω1 resonance
    不详
    OSCILLATORY INTEGRALS AND PHENOMENA BEYOND ALL ALGEBRAIC ORDERS, 2000, 1741 : 359 - 403
  • [10] 勿忘(0)1/2=0
    朱凤银
    李兵
    中学数学, 2002, (12) : 32 - 32