A new version of the CNRM Chemistry-Climate Model, CNRM-CCM: description and improvements from the CCMVal-2 simulations

被引:19
|
作者
Michou, M. [1 ]
Saint-Martin, D. [1 ]
Teyssedre, H. [1 ]
Alias, A. [1 ]
Karcher, F. [1 ]
Olivie, D. [1 ]
Voldoire, A. [1 ]
Josse, B. [1 ]
Peuch, V. -H. [1 ]
Clark, H. [2 ]
Lee, J. N. [3 ]
Cheroux, F. [1 ]
机构
[1] CNRS, GAME CNRM, Ctr Natl Rech Meteorol, Toulouse, France
[2] Univ Toulouse, CNRS, Lab Aerol, Toulouse, France
[3] CALTECH, Jet Prop Lab, Pasadena, CA USA
关键词
GENERAL-CIRCULATION MODEL; SIMPLE PARAMETERIZATION; TRANSPORT MODEL; TECHNICAL NOTE; SENSITIVITY; OZONE; FRANCE; SCHEME; DRAG;
D O I
10.5194/gmd-4-873-2011
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
This paper presents a new version of the Meteo-France CNRM Chemistry-Climate Model, so-called CNRM-CCM. It includes some fundamental changes from the previous version (CNRM-ACM) which was extensively evaluated in the context of the CCMVal-2 validation activity. The most notable changes concern the radiative code of the GCM, and the inclusion of the detailed stratospheric chemistry of our Chemistry-Transport model MOCAGE on-line within the GCM. A 47-yr transient simulation (1960-2006) is the basis of our analysis. CNRM-CCM generates satisfactory dynamical and chemical fields in the stratosphere. Several shortcomings of CNRM-ACM simulations for CCMVal-2 that resulted from an erroneous representation of the impact of volcanic aerosols as well as from transport deficiencies have been eliminated. Remaining problems concern the upper stratosphere (5 to 1 hPa) where temperatures are too high, and where there are biases in the NO2, N2O5 and O-3 mixing ratios. In contrast, temperatures at the tropical tropopause are too cold. These issues are addressed through the implementation of a more accurate radiation scheme at short wavelengths. Despite these problems we show that this new CNRM CCM is a useful tool to study chemistry-climate applications.
引用
收藏
页码:873 / 900
页数:28
相关论文
共 11 条
  • [1] A New Chemistry-Climate Model GRIMs-CCM: Model Evaluation of Interactive Chemistry-Meteorology Simulations
    Seungun Lee
    Rokjin J. Park
    Song-You Hong
    Myung-Seo Koo
    Jaein I. Jeong
    Sang-Wook Yeh
    Seok-Woo Son
    [J]. Asia-Pacific Journal of Atmospheric Sciences, 2022, 58 : 647 - 666
  • [2] A New Chemistry-Climate Model GRIMs-CCM: Model Evaluation of Interactive Chemistry-Meteorology Simulations
    Lee, Seungun
    Park, Rokjin J.
    Hong, Song-You
    Koo, Myung-Seo
    Jeong, Jaein I.
    Yeh, Sang-Wook
    Son, Seok-Woo
    [J]. ASIA-PACIFIC JOURNAL OF ATMOSPHERIC SCIENCES, 2022, 58 (05) : 647 - 666
  • [3] The SOCOL version 3.0 chemistry-climate model: description, evaluation, and implications from an advanced transport algorithm
    Stenke, A.
    Schraner, M.
    Rozanov, E.
    Egorova, T.
    Luo, B.
    Peter, T.
    [J]. GEOSCIENTIFIC MODEL DEVELOPMENT, 2013, 6 (05) : 1407 - 1427
  • [4] Past and future simulations of NO2 from a coupled chemistry-climate model in comparison with observations
    Struthers, H
    Kreher, K
    Austin, J
    Schofield, R
    Bodeker, G
    Johnston, P
    Shiona, H
    Thomas, A
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2004, 4 : 2227 - 2239
  • [5] Estimates of ozone return dates from Chemistry-Climate Model Initiative simulations
    Dhomse, Sandip S.
    Kinnison, Douglas
    Chipperfield, Martyn P.
    Salawitch, Ross J.
    Cionni, Irene
    Hegglin, Michaela I.
    Abraham, N. Luke
    Akiyoshi, Hideharu
    Archibald, Alex T.
    Bednarz, Ewa M.
    Bekki, Slimane
    Braesicke, Peter
    Butchart, Neal
    Dameris, Martin
    Deushi, Makoto
    Frith, Stacey
    Hardiman, Steven C.
    Hassler, Birgit
    Horowitz, LarryW.
    Hu, Rong-Ming
    Joeckel, Patrick
    Josse, Beatrice
    Kirner, Oliver
    Kremser, Stefanie
    Langematz, Ulrike
    Lewis, Jared
    Marchand, Marion
    Lin, Meiyun
    Mancini, Eva
    Marecal, Virginie
    Michou, Martine
    Morgenstern, Olaf
    O'Connor, Fiona M.
    Oman, Luke
    Pitari, Giovanni
    Plummer, David A.
    Pyle, John A.
    Revell, Laura E.
    Rozanov, Eugene
    Schofield, Robyn
    Stenke, Andrea
    Stone, Kane
    Sudo, Kengo
    Tilmes, Simone
    Visioni, Daniele
    Yamashita, Yousuke
    Zeng, Guang
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2018, 18 (11) : 8409 - 8438
  • [6] Recovery of stratospheric ozone in calculations by the Center for Climate System Research/National Institute for Environmental Studies chemistry-climate model under the CCMVal-REF2 scenario and a no-climate-change run
    Akiyoshi, H.
    Yamashita, Y.
    Sakamoto, K.
    Zhou, L. B.
    Imamura, T.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2010, 115
  • [7] Interactive Stratospheric Aerosol Microphysics-Chemistry Simulations of the 1991 Pinatubo Volcanic Aerosols With Newly Coupled Sectional Aerosol and Stratosphere-Troposphere Chemistry Modules in the NASA GEOS Chemistry-Climate Model (CCM)
    Case, Parker
    Colarco, Peter R.
    Toon, Brian
    Aquila, Valentina
    Keller, Christoph A.
    [J]. JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2023, 15 (08)
  • [8] Chemistry-climate interactions in the Goddard Institute for Space Studies general circulation model 2. New insights into modeling the preindustrial atmosphere
    Grenfell, JL
    Shindell, DT
    Koch, D
    Rind, D
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2001, 106 (D24) : 33435 - 33451
  • [9] Isoprene and monoterpene simulations using the chemistry-climate model EMAC (v2.55) with interactive vegetation from LPJ-GUESS (v4.0)
    Vella, Ryan
    Forrest, Matthew
    Lelieveld, Jos
    Tost, Holger
    [J]. GEOSCIENTIFIC MODEL DEVELOPMENT, 2023, 16 (03) : 885 - 906
  • [10] How does tropospheric VOC chemistry affect climate? An investigation of preindustrial control simulations using the Community Earth System Model version 2
    Stanton, Noah A.
    Tandon, Neil F.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2023, 23 (16) : 9191 - 9216