Experiments and modeling for thermal conductivity of graphite nanoplatelets/carbon composites

被引:2
|
作者
Yue, Qi [1 ]
Jin, Shuangling [1 ]
Guo, Chenting [1 ]
Gao, Qian [1 ]
Zhang, Rui [1 ]
Jin, Minglin [1 ]
机构
[1] Shanghai Inst Technol, Sch Mat Sci & Engn, Shanghai 201418, Peoples R China
关键词
Graphite nanoplatelets; Pitch; Pole figure; Thermal resistance; Thermal conductivity; GRAPHENE; NANOCOMPOSITES; TRANSPORT;
D O I
10.1080/1536383X.2016.1233966
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, the graphite nanoplatelets/carbon composites were fabricated from graphite nanoplatelets and pitch powders by a hot-pressing technology followed by carbonization and graphitization. The XRD and pole figure results show that the incorporation of pitch induces the decrease of size (L-a) and orientation degree of graphitic crystallites, while the in-plane thermal conductivity of graphitized sample is increased with the increasing pitch content up to 6 wt.%, achieving a maximum value of 405 W/m K. The pitch binders are filled into the voids to bridge two or more graphite nanoplatelets particles together to form extra thermal paths, which makes a great contribution to the enhancement of thermal conductivity. A thermal conductivity model for the graphitized composites is constructed based on a bridging mechanism, and the predicted results fit well with the experimental results.
引用
收藏
页码:762 / 768
页数:7
相关论文
共 50 条
  • [1] Modeling the thermal conductivity of graphene nanoplatelets reinforced composites
    Chu, Ke
    Li, Wen-sheng
    Dong, Hong-feng
    Tang, Fu-ling
    [J]. EPL, 2012, 100 (03)
  • [2] Modeling of Thermal Conductivity of Graphite Nanosheet Composites
    Wei Lin
    Rongwei Zhang
    C.P. Wong
    [J]. Journal of Electronic Materials, 2010, 39 : 268 - 272
  • [3] Modeling of Thermal Conductivity of Graphite Nanosheet Composites
    Lin, Wei
    Zhang, Rongwei
    Wong, C. P.
    [J]. JOURNAL OF ELECTRONIC MATERIALS, 2010, 39 (03) : 268 - 272
  • [4] Thermal conductivity of composites with hybrid carbon nanotubes and graphene nanoplatelets
    Chu, Ke
    Li, Wen-sheng
    Jia, Cheng-chang
    Tang, Fu-ling
    [J]. APPLIED PHYSICS LETTERS, 2012, 101 (21)
  • [5] Graphite nanoplatelets and carbon nanotubes based polyethylene composites: Electrical conductivity and morphology
    Haznedar, Galip
    Cravanzola, Sara
    Zanetti, Marco
    Scarano, Domenica
    Zecchina, Adriano
    Cesano, Federico
    [J]. MATERIALS CHEMISTRY AND PHYSICS, 2013, 143 (01) : 47 - 52
  • [6] Experiments and modeling of thermal conductivity of flake graphite/polymer composites affected by adding carbon-based nano-fillers
    Zhou, Shaoxin
    Xu, Jinzao
    Yang, Quan-Hong
    Chiang, Sumwai
    Li, Baohua
    Du, Hongda
    Xu, Chengjun
    Kang, Feiyu
    [J]. CARBON, 2013, 57 : 452 - 459
  • [7] Graphite Nanoplatelets Interlayered Carbon/Epoxy Composites
    Kim, H. S.
    Hahn, H. T.
    [J]. AIAA JOURNAL, 2009, 47 (11) : 2779 - 2784
  • [8] Thermal conductivity of PTFE composites filled with graphite particles and carbon fibers
    Jin Zunlong
    Chen Xiaotang
    Wang Yongqing
    Wang Dingbiao
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2015, 102 : 45 - 50
  • [9] Characterization of exfoliated graphite nanoplatelets/polycarbonate composites: electrical and thermal conductivity, and tensile, flexural, and rheological properties
    King, Julia A.
    Via, Michael D.
    Morrison, Faith A.
    Wiese, Kyle R.
    Beach, Edsel A.
    Cieslinski, Mark J.
    Bogucki, Gregg R.
    [J]. JOURNAL OF COMPOSITE MATERIALS, 2012, 46 (09) : 1029 - 1039
  • [10] Enhanced thermal conductivity of graphene nanoplatelets epoxy composites
    Jarosinski, Lukasz
    Rybak, Andrzej
    Gaska, Karolina
    Kmita, Grzegorz
    Porebska, Renata
    Kapusta, Czeslaw
    [J]. MATERIALS SCIENCE-POLAND, 2017, 35 (02): : 382 - 389