Strain engineering of van der Waals heterostructures

被引:37
|
作者
Vermeulen, Paul A. [1 ]
Mulder, Jefta [1 ]
Momand, Jamo [1 ]
Kooi, Bart J. [1 ]
机构
[1] Univ Groningen, Zernike Inst Adv Mat, Nijenborgh 4, NL-9747 AG Groningen, Netherlands
关键词
PULSED-LASER DEPOSITION; TOPOLOGICAL INSULATORS; MISFIT DISLOCATIONS; GROWTH; BI2TE3; BISMUTH; RELAXATION; EPITAXY; FILMS; GRAPHENE;
D O I
10.1039/c7nr07607j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Modifying the strain state of solids allows control over a plethora of functional properties. The weak interlayer bonding in van der Waals (vdWaals) materials such as graphene, hBN, MoS2, and Bi2Te3 might seem to exclude strain engineering, since strain would immediately relax at the vdWaals interfaces. Here we present direct observations of the contrary by showing growth of vdWaals heterostructures with persistent in-plane strains up to 5% and we show that strain relaxation follows a not yet reported process distinctly different from strain relaxation in three-dimensionally bonded (3D) materials. For this, 2D bonded Bi2Te3Sb2Te3 and 2D/3D bonded Bi2Te3-GeTe multilayered films are grown using Pulsed Laser Deposition (PLD) and their structure is monitored in situ using Reflective High Energy Electron Diffraction (RHEED) and post situ analysis is performed using Transmission Electron Microscopy (TEM). Strain relaxation is modeled and found to solely depend on the layer being grown and its initial strain. This insight demonstrates that strain engineering of 2D bonded heterostructures obeys different rules than hold for epitaxial 3D materials and opens the door to precise tuning of the strain state of the individual layers to optimize functional performance of vdWaals heterostructures.
引用
收藏
页码:1474 / 1480
页数:7
相关论文
共 50 条
  • [1] Vertical strain engineering of Van der Waals heterostructures
    Bian, Jinbo
    Xu, Zhiping
    [J]. NANOTECHNOLOGY, 2023, 34 (28)
  • [2] Moire engineering in van der Waals heterostructures
    Rakib, Tawfiqur
    Pochet, Pascal
    Ertekin, Elif
    Johnson, Harley T.
    [J]. JOURNAL OF APPLIED PHYSICS, 2022, 132 (12)
  • [3] Terahertz phonon engineering with van der Waals heterostructures
    Yoon, Yoseob
    Lu, Zheyu
    Uzundal, Can
    Qi, Ruishi
    Zhao, Wenyu
    Chen, Sudi
    Feng, Qixin
    Kim, Woochang
    Naik, Mit H.
    Watanabe, Kenji
    Taniguchi, Takashi
    Louie, Steven G.
    Crommie, Michael F.
    Wang, Feng
    [J]. NATURE, 2024, 631 (8022) : 771 - 776
  • [4] Van der Waals heterostructures
    Barnes, Natalie
    [J]. NATURE REVIEWS METHODS PRIMERS, 2022, 2 (01):
  • [5] Van der Waals heterostructures
    Geim, A. K.
    Grigorieva, I. V.
    [J]. NATURE, 2013, 499 (7459) : 419 - 425
  • [6] Van der Waals heterostructures
    A. K. Geim
    I. V. Grigorieva
    [J]. Nature, 2013, 499 : 419 - 425
  • [7] Van der Waals heterostructures
    [J]. Nature Reviews Methods Primers, 2
  • [8] Van der Waals engineering toward designer spintronic heterostructures
    Song, Jizhe
    Chen, Jianing
    Sun, Mengtao
    [J]. MATERIALS TODAY ELECTRONICS, 2023, 6
  • [9] Tunable optoelectronic and photocatalytic properties of BAs-BSe van der Waals heterostructures by strain engineering
    Fayaz, M.
    Muhammad, S.
    Bashir, Khadeeja
    Khan, A.
    Alam, Q.
    Amin, B.
    Idrees, M.
    [J]. CHEMICAL PHYSICS, 2023, 565
  • [10] Van der Waals isotope heterostructures for engineering phonon polariton dispersions
    Chen, M.
    Zhong, Y.
    Harris, E.
    Li, J.
    Zheng, Z.
    Chen, H.
    Wu, J. -S.
    Jarillo-Herrero, P.
    Ma, Q.
    Edgar, J. H.
    Lin, X.
    Dai, S.
    [J]. NATURE COMMUNICATIONS, 2023, 14 (01)