Bayesian analysis of autoregressive panel data model: application in genetic evaluation of beef cattle

被引:6
|
作者
Fonseca e Silva, Fabyano [1 ]
Safadi, Thelma [2 ]
Muniz, Joel Augusto [2 ]
Magalhaes Rosa, Guilherme Jordao [3 ]
de Aquino, Luiz Henrique [2 ]
Mourao, Gerson Barreto [4 ]
Osorio Silva, Carlos Henrique [1 ]
机构
[1] Univ Fed Vicosa, Dept Estat, BR-36570000 Vicosa, MG, Brazil
[2] Univ Fed Lavras, Dept Ciencias Exatas, BR-37200000 Lavras, MG, Brazil
[3] Univ Wisconsin Anim Sci, Madison, WI USA
[4] Univ Sao Paulo, ESALQ, Dept Zootecnia, BR-13418900 Piracicaba, SP, Brazil
来源
SCIENTIA AGRICOLA | 2011年 / 68卷 / 02期
关键词
MCMC; time series forecasting; prior comparison; predictive distribution;
D O I
10.1590/S0103-90162011000200015
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
The animal breeding values forecasting at futures times is a relevant technological innovation in the field of Animal Science, since its enables a previous indication of animals that will be either kept by the producer for breeding purposes or discarded. This study discusses an MCMC Bayesian methodology applied to panel data in a time series context. We consider Bayesian analysis of an autoregressive, AR(p), panel data model of order p, using an exact likelihood function, comparative analysis of prior distributions and predictive distributions of future observations. The methodology was tested by a simulation study using three priors: hierarchical Multivariate Normal-Inverse Gamma (model 1), independent Multivariate Student's t - Inverse Gamma (model 2) and Jeffrey's (model 3). Comparisons by Pseudo-Bayes Factor favored model 2. The proposed methodology was applied to longitudinal data relative to Expected Progeny Difference (EPD) of beef cattle sires. The forecast efficiency was around 80%. Regarding the mean width of the EPD interval estimation (95%) in a future time, a great advantage was observed for the proposed Bayesian methodology over usual asymptotic frequentist method.
引用
收藏
页码:237 / 245
页数:9
相关论文
共 50 条
  • [1] Bayesian hierarchical model appllied to genetic evaluation of of beef cattle growth curves
    Silva, N. A. M.
    Lima, R. R.
    Silva, F. F.
    Muniz, J. A.
    [J]. ARQUIVO BRASILEIRO DE MEDICINA VETERINARIA E ZOOTECNIA, 2010, 62 (02) : 409 - 418
  • [2] A Bayesian analysis of autoregressive time series panel data
    Nandram, B
    Petruccelli, JD
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 1997, 15 (03) : 328 - 334
  • [3] Bayesian inference for merged panel autoregressive model
    Kumar, Jitendra
    Agiwal, Varun
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (18) : 6197 - 6217
  • [4] Genetic analysis of longitudinal data in beef cattle: a review
    Speidel, S. E.
    Enns, R. M.
    Crews, D. H., Jr.
    [J]. GENETICS AND MOLECULAR RESEARCH, 2010, 9 (01): : 19 - 33
  • [5] Bayesian forecasting of sires breeding values using autoregressive panel data model
    Silva, F. F.
    Safadi, T.
    Muniz, J. A.
    Aquino, L. H.
    Mourao, G. B.
    [J]. ARQUIVO BRASILEIRO DE MEDICINA VETERINARIA E ZOOTECNIA, 2008, 60 (05) : 1166 - 1173
  • [6] Genetic evaluation of beef cattle herds through simulated data
    Cunha, E. E.
    Euclydes, R. F.
    Torres, R. A.
    Carneiro, P. L. S.
    [J]. ARQUIVO BRASILEIRO DE MEDICINA VETERINARIA E ZOOTECNIA, 2006, 58 (03) : 381 - 387
  • [7] Frequentist and bayesian approachs for genetic evaluation of Canchim beef cattle for growth traits
    Buranelo Toral, Fabio Luiz
    de Alencar, Mauricio Mello
    de Freitas, Alfredo Ribeiro
    [J]. REVISTA BRASILEIRA DE ZOOTECNIA-BRAZILIAN JOURNAL OF ANIMAL SCIENCE, 2007, 36 (01): : 43 - 53
  • [8] Semiparametric Bayesian inference in autoregressive panel data models
    Hirano, K
    [J]. ECONOMETRICA, 2002, 70 (02) : 781 - 799
  • [9] Bayesian meta-analysis of genetic parameters for growth traits in beef cattle
    Giannotti, JD
    Packer, IU
    Mercadante, MEZ
    Leandro, RA
    [J]. PESQUISA AGROPECUARIA BRASILEIRA, 2006, 41 (01) : 15 - 22
  • [10] Beef Symposium: The evolution of beef cattle genetic evaluation
    Bullock, K. D.
    Pollak, E. J.
    [J]. JOURNAL OF ANIMAL SCIENCE, 2009, 87 (14) : E1 - E2