Stable quantum computation of unstable classical chaos

被引:31
|
作者
Georgeot, B [1 ]
Shepelyansky, DL [1 ]
机构
[1] Univ Toulouse 3, UMR 5626 CNRS, Phys Quant Lab, F-31062 Toulouse 4, France
关键词
D O I
10.1103/PhysRevLett.86.5393
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show on the example of the Arnold cat map that classical chaotic systems can be simulated with exponential efficiency on a quantum computer. Although classical computer errors grow exponentially with time, the quantum algorithm with moderate imperfections is able to simulate accurately the unstable chaotic classical nonlinear dynamics for long times. The algorithm can be easily implemented on systems of a few qubits.
引用
收藏
页码:5393 / 5396
页数:4
相关论文
共 50 条
  • [1] Comment on "Stable quantum computation of unstable classical chaos" - Reply
    Georgeot, B
    Shepelyansky, DL
    [J]. PHYSICAL REVIEW LETTERS, 2002, 88 (21)
  • [2] Comment on "Stable quantum computation of unstable classical chaos" -: art. no. 219801
    Diósi, L
    [J]. PHYSICAL REVIEW LETTERS, 2002, 88 (21) : 1 - 219802
  • [3] Comparison of classical chaos with quantum chaos
    Caron, LA
    Huard, D
    Kröger, H
    Melkonyan, G
    Moriarty, KJM
    Nadeau, LP
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (24): : 6251 - 6265
  • [4] Quantum chaos, decoherence and quantum computation
    Benenti, G.
    Casati, G.
    [J]. RIVISTA DEL NUOVO CIMENTO, 2007, 30 (10): : 449 - 484
  • [5] Avoiding quantum chaos in quantum computation
    Berman, GP
    Borgonovi, F
    Izrailev, FM
    Tsifrinovich, VI
    [J]. PHYSICAL REVIEW E, 2002, 65 (01):
  • [6] Quantum chaos, decoherence and quantum computation
    G. Benenti
    G. Casati
    [J]. La Rivista del Nuovo Cimento, 2007, 30 (10) : 449 - 484
  • [7] Complexity of chaos and quantum computation
    Georgeot, Bertrand
    [J]. MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE, 2007, 17 (06) : 1221 - 1263
  • [8] Is quantum chaos weaker than classical chaos?
    Caron, LA
    Huard, D
    Kröger, H
    Melkonyan, G
    Moriarty, KJM
    Nadeau, LP
    [J]. PHYSICS LETTERS A, 2004, 322 (1-2) : 60 - 66
  • [9] QUANTUM CORRESPONDENCE TO CLASSICAL CHAOS
    HELLER, EJ
    STECHEL, EB
    [J]. CHEMICAL PHYSICS LETTERS, 1982, 90 (06) : 484 - 485
  • [10] CLASSICAL LIMIT OF QUANTUM CHAOS
    FEINGOLD, M
    MOISEYEV, N
    PERES, A
    [J]. CHEMICAL PHYSICS LETTERS, 1985, 117 (04) : 344 - 346