Carleson Measures and Trace Theorem for β-harmonic Functions

被引:3
|
作者
Liu, Heping [1 ]
Yang, Haibo [2 ]
Yang, Qixiang [3 ]
机构
[1] Peking Univ, Sch Math, Beijing 100871, Peoples R China
[2] Wuhan Text Univ, Coll Math & Comp, Wuhan 430200, Hubei, Peoples R China
[3] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Hubei, Peoples R China
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2018年 / 22卷 / 05期
基金
高等学校博士学科点专项科研基金;
关键词
beta-harmonic function; Carleson measures and local compact Carleson measures; bounded q-mean oscillation spaces; boundary distribution; Meyer wavelet; vaguelette; NAVIER-STOKES EQUATIONS; WELL-POSEDNESS; MORREY SPACES; BESOV-TYPE; POISSON INTEGRALS; VARIABLES; WAVELETS; BMO;
D O I
10.11650/tjm/171201
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
General harmonic extension has no uniqueness and harmonic functions may have different non-tangential boundary values in different convergence sense. In this paper, we establish first beta-harmonic functions in ultra-distribution frame. Further, we consider the characterization between Carleson measure space and boundary distribution space. For beta-harmonic functions with boundary distributions, there exists no maximum value principle. We apply Meyer wavelets to introduce basic harmonic functions and basic observers. We apply Meyer wavelets and vaguelette knowledge to prove the uniqueness of beta-harmonic extension and prove also that beta-harmonic function converges to boundary distribution in the relative norm sense.
引用
收藏
页码:1107 / 1138
页数:32
相关论文
共 50 条