Perturbation Theory for a Nonlinear Two-level System

被引:0
|
作者
Zhang, Z. J. [1 ]
Jiang, D. G. [1 ]
Yi, X. X. [1 ]
机构
[1] Dalian Univ Technol, Sch Phys & Optoelect Technol, Dalian 116024, Peoples R China
关键词
Perturbation; Nonlinear system; BOSE; ATOMS;
D O I
10.3938/jkps.57.526
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Perturbation theory is an important tool in quantum mechanics, it can help to find solutions to the Schrodinger equation and has been proven to he a good approximation for linear quantum systems. In this paper, we examine whether the perturbation theory is available for nonlinear systems by exemplifying a nonlinear two-level system. The results show that the ratio (r) of the nonlinear rate C to the tunneling coefficient V determines the validity of the perturbation theory. For small ratio r, the perturbation theory is available; otherwise, it yields wrong results.
引用
收藏
页码:526 / 531
页数:6
相关论文
共 50 条
  • [1] Perturbation Theory for Open Two-Level Nonlinear Quantum Systems
    张志杰
    姜东光
    王伟
    [J]. Communications in Theoretical Physics, 2011, 56 (07) : 67 - 70
  • [2] Perturbation Theory for Open Two-Level Nonlinear Quantum Systems
    Zhang Zhi-Jie
    Jiang Dong-Guang
    Wang Wei
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2011, 56 (01) : 67 - 70
  • [3] Perturbation theory and the two-level approximation: A corollary and critique
    Andrews, David L.
    Bradshaw, David S.
    Coles, Matt M.
    [J]. CHEMICAL PHYSICS LETTERS, 2011, 503 (1-3) : 153 - 156
  • [4] Adiabatic Shortcut in Nonlinear Two-Level system
    Liu, J. H.
    Zhang, Y. N.
    Liu, Y.
    Liu, H. D.
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2020, 59 (02) : 507 - 513
  • [5] Adiabatic Shortcut in Nonlinear Two-Level system
    J. H. Liu
    Y. N. Zhang
    Y. Liu
    H. D. Liu
    [J]. International Journal of Theoretical Physics, 2020, 59 : 507 - 513
  • [6] Quantum dynamics of a two-level system in a structured environment: Numerical study beyond perturbation theory
    Escher, Johanna Charlotte
    Ankerhold, Joachim
    [J]. PHYSICAL REVIEW A, 2011, 83 (03)
  • [7] The Floquet Theory of the Two-Level System Revisited
    Schmidt, Heinz-Juergen
    [J]. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2018, 73 (08): : 705 - 731
  • [8] Dissipation in open two-level systems: Perturbation theory and polaron transformation
    Brandes, T
    Vorrath, T
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2003, 17 (28): : 5465 - 5469
  • [9] Berry phase in a generalized nonlinear two-level system
    Liu Ji-Bing
    Li Jia-Hua
    Song Pei-Jun
    Li Wei-Bin
    [J]. CHINESE PHYSICS B, 2008, 17 (01) : 38 - 42
  • [10] Berry phase in a generalized nonlinear two-level system
    刘继兵
    李家华
    宋佩君
    李伟斌
    [J]. Chinese Physics B, 2008, 17 (01) : 38 - 42