Alignment of mass spectrometry data by clique finding and optimization

被引:0
|
作者
Fasulo, Daniel [1 ]
Emde, Anne-Katrin [1 ]
Wang, Lu-Yong [1 ]
Noy, Karin [1 ]
Edwards, Nathan [2 ]
机构
[1] Siemens Corp Res, Integrated Data Syst Dept, 755 Coll Rd E, Princeton, NJ USA
[2] Ctr Bioinformat & Comp Biol, College Pk, MD 20742 USA
关键词
mass spectrometry; alignment; bounded error model; clique finding;
D O I
暂无
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Mass spectrometry (MS) is becoming a popular approach for quantifying the protein composition of complex samples. A great challenge for comparative proteomic profiling is to match corresponding peptide features from different experiments to ensure that the same protein intensities are correctly identified. Multi-dimensional data acquisition from liquid-chromatography mass spectrometry (LC-MS) makes the alignment problem harder. We propose a general paradigm for aligning peptide features using a bounded error model. Our method is tolerant of imperfect measurements, missing peaks, and extraneous peaks. It can handle an arbitrary number of dimensions of separation, and is very fast in practice even for large data sets. Finally, its parameters are intuitive and we describe a heuristic for estimating them automatically. We demonstrate results on single- and multi-dimensional data.
引用
收藏
页码:119 / +
页数:2
相关论文
共 50 条
  • [1] Algorithms for alignment of mass spectrometry proteomic data
    Jeffries, N
    [J]. BIOINFORMATICS, 2005, 21 (14) : 3066 - 3073
  • [2] Peaks detection and alignment for mass spectrometry data
    Antoniadis, Anestis
    Bigot, Jeremie
    Lambert-Lacroix, Sophie
    [J]. JOURNAL OF THE SFDS, 2010, 151 (01): : 17 - 37
  • [3] A geometric approach for the alignment of liquid chromatography -: mass spectrometry data
    Lange, Eva
    Groepl, Clemens
    Schulz-Trieglaff, Ole
    Leinenbach, Andreas
    Huber, Christian
    Reinert, Knut
    [J]. BIOINFORMATICS, 2007, 23 (13) : I273 - I281
  • [4] Mutual Information Optimization for Mass Spectra Data Alignment
    Zoppis, Italo
    Gianazza, Erica
    Borsani, Massimiliano
    Chinello, Clizia
    Mainini, Veronica
    Galbusera, Carmen
    Ferrarese, Carlo
    Galimberti, Gloria
    Sorbi, Sandro
    Borroni, Barbara
    Magni, Fulvio
    Antoniotti, Marco
    Mauri, Giancarlo
    [J]. IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2012, 9 (03) : 934 - 939
  • [5] Interactive feature finding in liquid chromatography mass spectrometry data
    Clifford, David
    Buckley, Michael
    Fung, Kim Y. C.
    Cosgrove, Leah
    [J]. JOURNAL OF PROTEOME RESEARCH, 2006, 5 (11) : 3179 - 3185
  • [6] Finding cancer biomarkers from mass spectrometry data by decision lists
    Liu, J
    Li, M
    [J]. JOURNAL OF COMPUTATIONAL BIOLOGY, 2005, 12 (07) : 971 - 979
  • [7] Virtual polymorphism: Finding divergent peptide matches in mass spectrometry data
    Starkweather, Rebekah
    Barnes, Charles S.
    Wyckoff, Gerald J.
    Keightley, J. Andrew
    [J]. ANALYTICAL CHEMISTRY, 2007, 79 (13) : 5030 - 5039
  • [8] Finding cancer biomarkers from mass spectrometry data by decision lists
    Liu, R
    Li, M
    [J]. 2004 IEEE COMPUTATIONAL SYSTEMS BIOINFORMATICS CONFERENCE, PROCEEDINGS, 2004, : 654 - 655
  • [9] Robust peak detection and alignment of nanoLC-FT mass spectrometry data
    Codrea, Marius C.
    Jimenez, Connie R.
    Piersma, Sander
    Heringa, Jaap
    Marchiori, Elena
    [J]. EVOLUTIONARY COMPUTATION, MACHINE LEARNING AND DATA MINING IN BIOINFORMATICS, PROCEEDINGS, 2007, 4447 : 35 - +
  • [10] Peak alignment of gas chromatography-mass spectrometry data with deep learning
    Li, Mike
    Wang, X. Rosalind
    [J]. JOURNAL OF CHROMATOGRAPHY A, 2019, 1604