Evolutionary Algorithms for Optimizing Cost and QoS on Cloud-based Content Distribution Networks

被引:4
|
作者
Iturriaga, S. [1 ]
Nesmachnow, S. [1 ]
Goni, G. [1 ]
Dorronsoro, B. [2 ]
Tchernykh, A. [3 ]
机构
[1] Univ Republica, Julio Herrera & Reissig 565, Montevideo 11300, Uruguay
[2] Univ Cadiz, C Ancha 16, Cadiz 11001, Spain
[3] Ctr Invest Cient & Educ Super Ensenada, Carretera Ensenada Tijuana 3918 Zona Playitas, Ensenada 22860, Baja California, Mexico
关键词
OPTIMIZATION;
D O I
10.1134/S0361768819080127
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Content Distribution Networks (CDN) are key for providing worldwide services and content to end-users. In this work, we propose three multiobjective evolutionary algorithms for solving the problem of designing and optimizing cloud-based CDNs. We consider the objectives of minimizing the total cost of the infrastructure (including virtual machines, network, and storage) and the maximization of the quality-of-service provided to end-users. The proposed model considers a multi-tenant approach where a single cloud-based CDN is able to host multiple content providers using a resource sharing strategy. The proposed evolutionary algorithms address the offline problem of provisioning infrastructure resources while a greedy heuristic method is proposed for addressing the online problem of routing contents. The experimental evaluation of the proposed methods is performed over a set of realistic problem instances. Results indicate that the proposed approach is effective for designing and optimizing cloud-based CDNs reducing total costs by up to 10.3% while maintaining an adequate quality of service.
引用
收藏
页码:544 / 556
页数:13
相关论文
共 50 条
  • [1] Evolutionary Algorithms for Optimizing Cost and QoS on Cloud-based Content Distribution Networks
    S. Iturriaga
    S. Nesmachnow
    G. Goñi
    B. Dorronsoro
    A. Tchernykh
    Programming and Computer Software, 2019, 45 : 544 - 556
  • [2] A Survey on Content Placement Algorithms for Cloud-Based Content Delivery Networks
    Salahuddin, Mohammad A.
    Sahoo, Jagruti
    Glitho, Roch
    Elbiaze, Halima
    Ajib, Wessam
    IEEE ACCESS, 2018, 6 : 91 - 114
  • [3] Cloud-based evolutionary algorithms: An algorithmic study
    Meri, K.
    Arenas, M. G.
    Mora, A. M.
    Merelo, J. J.
    Castillo, P. A.
    Garcia-Sanchez, P.
    Laredo, J. L. J.
    NATURAL COMPUTING, 2013, 12 (02) : 135 - 147
  • [4] Is there a free lunch for cloud-based evolutionary algorithms?
    Garcia-Valdez, Mario
    Mancilla, Alejandra
    Trujillo, Leonardo
    Merelo, Juan-J.
    Fernandez-de-Vega, Francisco
    2013 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2013, : 1255 - 1262
  • [5] Cloud-based evolutionary algorithms: An algorithmic study
    K. Meri
    M. G. Arenas
    A. M. Mora
    J. J. Merelo
    P. A. Castillo
    P. García-Sánchez
    J. L. J. Laredo
    Natural Computing, 2013, 12 : 135 - 147
  • [6] Social Network Analysis Inspired Content Placement with QoS in Cloud-based Content Delivery Networks
    Salahuddin, Mohammad A.
    Elbiaze, Halima
    Ajib, Wessam
    Glitho, Roch
    2015 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2015,
  • [7] Dynamic QoS-Aware Resource Assignment in Cloud-Based Content-Delivery Networks
    Haghighi, Ali A.
    Heydari, Shahram Shah
    Shahbazpanahi, Shahram
    IEEE ACCESS, 2018, 6 : 2298 - 2309
  • [8] Minimizing Deployment Cost of Cloud-Based Web Application with Guaranteed QoS
    Mireslami, Seyedehmehrnaz
    Rakai, Logan
    Wang, Mea
    Far, Behrouz Homayoun
    2015 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2015,
  • [9] Practical Resource Provisioning and Caching with Dynamic Resilience for Cloud-Based Content Distribution Networks
    Hu, Menglan
    Luo, Jun
    Wang, Yang
    Veeravalli, Bharadwaj
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2014, 25 (08) : 2169 - 2179
  • [10] Cost Optimization for Dynamic Content Delivery in Cloud-Based Content Delivery Network
    Banu, S. Sajitha
    Balasundaram, S. R.
    JOURNAL OF INFORMATION TECHNOLOGY RESEARCH, 2021, 14 (04) : 18 - 32