Optimal Convergence Analysis of a Mixed Finite Element Method for Fourth-Order Elliptic Problems

被引:6
|
作者
Yan, Yue [1 ,2 ]
Li, Weijia [2 ]
Chen, Wenbin [2 ,3 ]
Wang, Yanqiu [4 ]
机构
[1] Shanghai Univ Finance & Econ, Sch Math, Shanghai 200433, Peoples R China
[2] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[3] Fudan Univ, Shanghai Key Lab Contemporary Appl Math, Shanghai 200433, Peoples R China
[4] Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Jiangsu, Peoples R China
关键词
Fourth-order elliptic problems; mixed finite element; optimal convergence; CONVEX SPLITTING SCHEMES; NONLOCAL CAHN-HILLIARD; ENERGY STABLE SCHEME; THIN-FILM MODEL; DIFFERENCE SCHEME; 2ND-ORDER;
D O I
10.4208/cicp.OA-2017-0168
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A Ciarlet-Raviart type mixed finite element approximation is constructed and analyzed for a class of fourth-order elliptic problems arising from solving various gradient systems. Optimal error estimates are obtained, using a super-closeness relation between the finite element solution and the Ritz projection of the PDE solution. Numerical results agree with the theoretical analysis.
引用
收藏
页码:510 / 530
页数:21
相关论文
共 50 条