Comparative molecular investigation of the potential inhibitors against SARS-CoV-2 main protease: a molecular docking study

被引:30
|
作者
Khan, Md Arif [1 ]
Mahmud, Shafi [2 ]
Ul Alam, A. S. M. Rubayet [3 ]
Rahman, Md Ekhtiar [2 ]
Ahmed, Firoz [4 ]
Rahmatullah, Mohammed [1 ]
机构
[1] Univ Dev Alternat, Dept Biotechnol & Genet Engn, Dhaka 1209, Bangladesh
[2] Univ Rajshahi, Dept Genet Engn & Biotechnol, Rajshahi, Bangladesh
[3] Jashore Univ Sci & Technol, Dept Microbiol, Jashore, Bangladesh
[4] Noakhali Sci & Technol Univ, Dept Microbiol, Noakhali, Bangladesh
来源
关键词
COVID-19; SARS-CoV-2; anti-viral drugs; drug discovery; epirubicin; vapreotida; saquinavir; FORCE-FIELD; CORONAVIRUS; LOPINAVIR/RITONAVIR; PARAMETERIZATION; DRUGS;
D O I
10.1080/07391102.2020.1796813
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recent outbreak of novel coronavirus and its rapid pandemic escalation in all over the world has drawn the attention to urgent need for effective drug development. However, due to prolonged vaccine and drug development procedure against a newly emerged devastating SARS-CoV-2 virus pathogen, repurposing of existing potential pertinent drug molecules would be preferable strategy to reduce mortality immediately and further development of new drugs to combat overall global Covid-19 crisis in all over the world. Herein, we have filtered 23 prospective drug candidates through literature review. Assessing evidences from molecular docking studies, it was clearly seen that, Epirubicin, Vapreotida, and Saquinavir exhibited better binding affinity against SARS-CoV-2 Main Protease than other drug molecules among the 23 potential inhibitors. However, 50 ns molecular dynamics simulation indicated the less mobile nature of the docked complex maintaining structural integrity. Our overall prediction findings indicate that Epirubicin, Vapreotida, and Saquinavir may inhibit COVID-19 by synergistic interactions in the active cavity and those results can pave the way in drug discovery although it has to be further validated by in-vitro and in-vivo investigations. Communicated by Ramaswamy H. Sarma
引用
收藏
页码:6317 / 6323
页数:7
相关论文
共 50 条
  • [1] An investigation into the identification of potential inhibitors of SARS-CoV-2 main protease using molecular docking study
    Das, Sourav
    Sarmah, Sharat
    Lyndem, Sona
    Singha Roy, Atanu
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2021, 39 (09): : 3347 - 3357
  • [2] A molecular docking study of potential inhibitors and repurposed drugs against SARS-CoV-2 main protease enzyme
    Ercan, Selami
    Cinar, Ercan
    JOURNAL OF THE INDIAN CHEMICAL SOCIETY, 2021, 98 (03)
  • [3] Molecular Docking Unveils Prospective Inhibitors for the SARS-COV-2 Main Protease
    Ahmad, Fawad
    Ikram, Saima
    Ahmad, Jamshaid
    Rehman, Irshad Ur
    Khattak, Saeed Ullah
    Butt, Sadia
    Mushtaq, Maryam
    SAINS MALAYSIANA, 2021, 50 (05): : 1473 - 1484
  • [4] Antiviral peptides against the main protease of SARS-CoV-2: A molecular docking and dynamics study
    Mahmud, Shafi
    Biswas, Suvro
    Paul, Gobindo Kumar
    Mita, Mohasana Akter
    Afrose, Shamima
    Hasan, Md Robiul
    Shimu, Mst Sharmin Sultana
    Uddin, Mohammad Abu Raihan
    Uddin, Md Salah
    Zaman, Shahriar
    Kibria, K. M. Kaderi
    Khan, Md Arif
    Bin Emran, Talha
    Abu Saleh, Md
    ARABIAN JOURNAL OF CHEMISTRY, 2021, 14 (09)
  • [5] Screening of potential inhibitors targeting the main protease structure of SARS-CoV-2 via molecular docking
    Yang, Xinbo
    Xing, Xianrong
    Liu, Yirui
    Zheng, Yuanjie
    FRONTIERS IN PHARMACOLOGY, 2022, 13
  • [6] Molecular Docking Study of Some Nucleoside Analogs against Main Protease of SARS-CoV-2
    Chhetri, Abhijit
    Brahman, Dhiraj
    EURASIAN JOURNAL OF MEDICINE AND ONCOLOGY, 2020, 4 (04): : 324 - 335
  • [7] Identification of potential inhibitors of SARS-CoV-2 main protease from Aloe vera compounds: A molecular docking study
    Mpiana, Pius T.
    Ngbolua, Koto-te-Nyiwa
    Tshibangu, Damien S. T.
    Kilembe, Jason T.
    Gbolo, Benjamin Z.
    Mwanangombo, Domaine T.
    Inkoto, Clement L.
    Lengbiye, Emmanuel M.
    Mbadiko, Clement M.
    Matondo, Aristote
    Bongo, Gedeon N.
    Tshilanda, Dorothee D.
    CHEMICAL PHYSICS LETTERS, 2020, 754
  • [8] Molecular dynamics simulation of docking structures of SARS-CoV-2 main protease and HIV protease inhibitors
    Cardoso, Wesley B.
    Mendanha, Sebastiao A.
    JOURNAL OF MOLECULAR STRUCTURE, 2021, 1225
  • [9] Computational Docking Study of Calanolides as Potential Inhibitors of SARS-CoV-2 Main Protease
    Benalia, Abdelkrim
    Abdeldjebar, Hasnia
    Badji, Taqiy Eddine
    FRENCH-UKRAINIAN JOURNAL OF CHEMISTRY, 2022, 10 (01): : 48 - 59
  • [10] Potential bioactive glycosylated flavonoids as SARS-CoV-2 main protease inhibitors: A molecular docking and simulation studies
    Cherrak, Sabri Ahmed
    Merzouk, Hafida
    Mokhtari-Soulimane, Nassima
    PLOS ONE, 2020, 15 (10):