Vibrational fingerprints of ferroelectric HfO2

被引:33
|
作者
Fan, Shiyu [1 ]
Singh, Sobhit [2 ]
Xu, Xianghan [2 ,3 ]
Park, Kiman [4 ]
Qi, Yubo [2 ]
Cheong, S. W. [2 ,3 ]
Vanderbilt, David [2 ]
Rabe, Karin M. [2 ]
Musfeldt, J. L. [1 ,4 ]
机构
[1] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA
[2] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA
[3] Rutgers State Univ, Rutgers Ctr Emergent Mat, Piscataway, NJ 08854 USA
[4] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA
基金
美国国家科学基金会;
关键词
INTERATOMIC FORCE-CONSTANTS; TOTAL-ENERGY CALCULATIONS; THIN-FILMS; OPTICAL CONDUCTIVITY; LATTICE-DYNAMICS; PHASE-TRANSITION; RAMAN-SPECTRUM; HAFNIA; PRESSURE; ZIRCONIA;
D O I
10.1038/s41535-022-00436-8
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Hafnia (HfO2) is a promising material for emerging chip applications due to its high-kappa dielectric behavior, suitability for negative capacitance heterostructures, scalable ferroelectricity, and silicon compatibility. The lattice dynamics along with phononic properties such as thermal conductivity, contraction, and heat capacity are under-explored, primarily due to the absence of high quality single crystals. Herein, we report the vibrational properties of a series of HfO2 crystals stabilized with yttrium (chemical formula HfO2: xY, where x = 20, 12, 11, 8, and 0%) and compare our findings with a symmetry analysis and lattice dynamics calculations. We untangle the effects of Y by testing our calculations against the measured Raman and infrared spectra of the cubic, antipolar orthorhombic, and monoclinic phases and then proceed to reveal the signature modes of polar orthorhombic hafnia. This work provides a spectroscopic fingerprint for several different phases of HfO2 and paves the way for an analysis of mode contributions to high-kappa dielectric and ferroelectric properties for chip technologies.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Vibrational fingerprints of ferroelectric HfO2
    Shiyu Fan
    Sobhit Singh
    Xianghan Xu
    Kiman Park
    Yubo Qi
    S. W. Cheong
    David Vanderbilt
    Karin M. Rabe
    J. L. Musfeldt
    npj Quantum Materials, 7
  • [2] Defects in ferroelectric HfO2
    Chouprik, Anastasia
    Negrov, Dmitrii
    Tsymbal, Evgeny Y.
    Zenkevich, Andrei
    NANOSCALE, 2021, 13 (27) : 11635 - 11678
  • [3] Ferroelectric HfO2 formation by annealing of a HfO2/Hf/HfO2/Si(100) stacked structure
    Kim, Min Gee
    Inoue, Hidefumi
    Ohmi, Shun-ichiro
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2019, 58
  • [4] Electron trapping in ferroelectric HfO2
    Izmailov, Roman A.
    Strand, Jack W.
    Larcher, Luca
    O'Sullivan, Barry J.
    Shluger, Alexander L.
    Afanas'ev, Valeri V.
    PHYSICAL REVIEW MATERIALS, 2021, 5 (03)
  • [5] Ferroelectric HfO2 and the importance of strain
    Behara, Sesha Sai
    Van der Ven, Anton
    PHYSICAL REVIEW MATERIALS, 2022, 6 (05)
  • [6] Origin of Pyroelectricity in Ferroelectric HfO2
    Liu, J.
    Liu, S.
    Liu, L. H.
    Hanrahan, B.
    Pantelides, S. T.
    PHYSICAL REVIEW APPLIED, 2019, 12 (03)
  • [7] The fundamentals and applications of ferroelectric HfO2
    Uwe Schroeder
    Min Hyuk Park
    Thomas Mikolajick
    Cheol Seong Hwang
    Nature Reviews Materials, 2022, 7 : 653 - 669
  • [8] Hafnia HfO2 is a proper ferroelectric
    Raeliarijaona, Aldo
    Cohen, R. E.
    PHYSICAL REVIEW B, 2023, 108 (09)
  • [9] Another route to ferroelectric HfO2
    Eastman, Jeffrey A.
    NATURE MATERIALS, 2022, 21 (08) : 845 - 847
  • [10] Another route to ferroelectric HfO2
    Jeffrey A. Eastman
    Nature Materials, 2022, 21 : 845 - 847