Approximation properties of modified (p, q)-Szasz-Mirakyan-Kantorovich operators

被引:1
|
作者
Zheng, Zhongbin [1 ]
Fang, Jinwu [2 ]
Cheng, Wentao [3 ]
Guo, Zhidong [3 ]
Zhou, Xiaoling [3 ]
机构
[1] China Acad Informat & Commun Technol, Shanghai 200232, Peoples R China
[2] Ind Internet Innovat Ctr Shanghai Co Ltd, Shanghai 200120, Peoples R China
[3] Anqing Normal Univ, Sch Math & Phys, Anqing 246133, Anhui, Peoples R China
来源
AIMS MATHEMATICS | 2020年 / 5卷 / 05期
基金
中国国家自然科学基金;
关键词
modified; (p; q)-Szasz-Mirakyan-Kantorovich operators; moduli of continuity; rate of convergence; weighted approximation;
D O I
10.3934/math.2020317
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce a new kind of modified (p, q)-Szasz-Mirakyan-Kantorovich operators based on (p, q)-calculus. Next, the moments computation formulas, the second and fourth order central moments computation formulas and other quantitative properties are investigated. Then, the approximation properties including local approximation, weighted approximation, rate of convergence and Voronovskaja type theorem are obtained. Finally, we generalize the operators by adding a parameter lambda.
引用
收藏
页码:4959 / 4973
页数:15
相关论文
共 50 条
  • [1] Approximation properties of Szasz-Mirakyan-Kantorovich type operators
    Aral, Ali
    Limmam, Mohamed Lemine
    Ozsarac, Firat
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (16) : 5233 - 5240
  • [2] APPROXIMATION PROPERTIES OF THE FRACTIONAL q-INTEGRAL OF RIEMANN-LIOUVILLE INTEGRAL TYPE SZASZ-MIRAKYAN-KANTOROVICH OPERATORS
    Kara, Mustafa
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2022, 71 (04): : 1136 - 1168
  • [3] Approximation by Kantorovich form of modified Szasz-Mirakyan operators
    Dhamija, Minakshi
    Pratap, Ram
    Deo, Naokant
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 317 : 109 - 120
  • [4] On (p, q)-Szasz-Mirakyan operators and their approximation properties
    Mursaleen, M.
    Al-Abied, A. A. H.
    Alotaibi, Abdullah
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [5] On (p, q)-generalization of Szasz-Mirakyan Kantorovich operators
    Sharma, Honey
    Gupta, Cheena
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2015, 8 (03): : 213 - 222
  • [6] A note on Szasz-Mirakyan-Kantorovich type operators preserving e-x
    Gupta, Vijay
    Aral, Ali
    POSITIVITY, 2018, 22 (02) : 415 - 423
  • [7] ON STANCU TYPE GENERALIZATION OF (p; q)-SZASZ-MIRAKYAN KANTOROVICH TYPE OPERATORS
    Mishra, Vishnu Narayan
    Devdhara, Ankita R.
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2018, 36 (3-4): : 285 - 299
  • [8] ON A NEW APPROACH BY MODIFIED (p; q)-SZASZ-MIRAKYAN OPERATORS
    Mishra, Vishnu Narayan
    Devdhara, Ankita R.
    Ansari, Khursheed J.
    Karateke, Seda
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2021, 19 (03): : 389 - 404
  • [9] Pointwise approximation by the modified Szasz-Mirakyan operators
    Zeng, Xiao-Ming
    Chen, X.
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2007, 9 (04) : 421 - 429
  • [10] Some Approximation Properties by q-Szasz-Mirakyan-Baskakov-Stancu Operators
    Gupta, Vijay
    Karsli, Harun
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2012, 33 (02) : 175 - 182