Chirality-Discriminated Conductivity of Metal-Amino Acid Biocoordination Polymer Nanowires

被引:39
|
作者
Zheng, Jianzhong [1 ,2 ]
Wu, Yijin [1 ,2 ]
Deng, Ke [1 ]
He, Meng [1 ]
He, Liangcan [1 ]
Cao, Jing [1 ]
Zhang, Xugang [1 ]
Liu, Yaling [1 ]
Li, Shunxing [2 ]
Tang, Zhiyong [1 ]
机构
[1] Natl Ctr Nanosci & Technol, CAS Ctr Excellence Nanosci, CAS Key Lab Nanosyst & Hierarch Fabricat, Beijing 100190, Peoples R China
[2] Minnan Normal Univ, Fujian Prov Key Lab Modern Analyt Sci & Separat T, Zhangzhou 363000, Peoples R China
基金
中国国家自然科学基金;
关键词
biocoordination polymer; self-assembly; nanowire; chirality; conductivity; ORGANIC FRAMEWORK; COORDINATION POLYMERS; NANOPOROUS MATERIALS; MOLECULES; NANOSTRUCTURES; DEVICES; LIGAND;
D O I
10.1021/acsnano.6b03833
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Biocoordination polymer (BCP) nanowires are successfully constructed through self-assembly of chiral cysteine amino acids and Cd cations in solution. The varied chirality of cysteine is explored to demonstrate the difference of BCP nano-wires in both morphology and structure. More interestingly and surprisingly, the electrical property measurement reveals that, although all Cd(II)/cysteine BCP nanowires behave as semiconductors, the conductivity of the Cd(II)/DL-cysteine nanowires is 4 times higher than that of the Cd(II)/L-cysteine or Cd(II)/D-cysteine ones. The origin of such chirality-discriminated characteristics registered in BCP nanowires is further elucidated by theoretical calculation. These findings demonstrate that the morphology, structure, and property of BCP nanostructures could be tuned by the chirality of the bridging ligands, which will shed light on the comprehension of chirality transcription as well as construction of chirality-regulated functional materials.
引用
收藏
页码:8564 / 8570
页数:7
相关论文
共 48 条
  • [1] Twisted Metal-Amino Acid Nanobelts: Chirality Transcription from Molecules to Frameworks
    Li, Chao
    Deng, Ke
    Tang, Zhiyong
    Jiang, Lei
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (23) : 8202 - 8209
  • [2] Thermoanalytical investigations about the metal-amino acid interactions
    de Farias, RF
    Scatena, H
    Airoldi, C
    JOURNAL OF INORGANIC BIOCHEMISTRY, 1999, 73 (04) : 253 - 257
  • [3] POLARIMETRIC STUDY OF SIMPLE AND MIXED METAL-AMINO ACID COMPLEXES
    PARIS, MR
    PETITRAM.M
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 1968, 7 (03) : 228 - &
  • [4] DECARBOXYLATION REACTION OF OXALACETIC ACID BY METAL-CHELATES .2. METAL-AMINO ACID
    YAMANE, Y
    YAMAJI, N
    OGASHIWA, T
    MIYAZAKI, M
    YAKUGAKU ZASSHI-JOURNAL OF THE PHARMACEUTICAL SOCIETY OF JAPAN, 1977, 97 (01): : 70 - 75
  • [6] Resistive pulse analysis of chiral amino acids utilizing metal-amino acid crystallization differences
    Stringer, Blake
    Schmeltzer, Alexandra
    Ryu, C. Hyun
    Ren, Hang
    Luo, Long
    ANALYST, 2024, 149 (11) : 3108 - 3114
  • [7] SURFACE CHARACTERIZATION IN THE ADSORPTION OF METAL-AMINO ACID COMPLEXES ON CLAY-MINERALS
    DILLARD, JG
    CROWTHER, DL
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1982, 183 (MAR): : 198 - COLL
  • [8] Controllable Assembly, Structures, and Properties of Lanthanide-Transition Metal-Amino Acid Clusters
    Xiang, Sheng-Chang
    Hu, Sheng-Min
    Sheng, Tian-Lu
    Chen, Ling
    Wu, Xin-Tao
    CONTROLLED ASSEMBLY AND MODIFICATION OF INORGANIC SYSTEMS, 2009, 133 : 161 - 206
  • [9] JAHN-TELLER STABILIZATION AND ENTROPY CHANGES ACCOMPANYING THE FORMATION OF METAL-AMINO ACID COMPLEXES
    SHARMA, VS
    MATHUR, HB
    BISWAS, AB
    JOURNAL OF INORGANIC & NUCLEAR CHEMISTRY, 1964, 26 (02): : 382 - 384
  • [10] Metal-amino acid (or peptide)-nucleoside (or base) ternary complexes.: Recognition factors.
    Terrón-Homar, A
    Fiol, JJ
    García-Raso, A
    Herrero, LA
    JOURNAL OF INORGANIC BIOCHEMISTRY, 2001, 86 (01) : 104 - 104