Polarization-Sensitive Optical Coherence Tomography for Brain Tumor Characterization

被引:16
|
作者
Li, Yun-Qian [1 ]
Chiu, Kai-Shih [2 ]
Liu, Xin-Rui [1 ]
Hsiao, Tien-Yu [2 ]
Zhao, Gang [1 ]
Li, Shan-Ji [1 ]
Lin, Ching-Po [1 ]
Sun, Chia-Wei [2 ]
机构
[1] Jilin Univ, Dept Neurosurg Oncol, Hosp 1, Changchun 130021, Jilin, Peoples R China
[2] Natl Chiao Tung Univ, Coll Elect & Comp Engn, Dept Photon, Biomed Opt Imaging Lab, Hsinchu 30010, Taiwan
关键词
Brain tumor; optical coherence tomography; optical polarization; white matter; RESECTION; GLIOMAS; SURVIVAL; TISSUE; EXTENT;
D O I
10.1109/JSTQE.2018.2885487
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Complete removal of brain tumor is of the most interest to a surgeon because the resection area directly relates to recurrence rate. Although there are many biomedical imaging modalities applied to locate the positions of tumors, they lack the spatial resolution to precisely delineate the boundary between brain tumor and normal brain tissues and are also inconvenient to be used intraoperatively. This study aims to examine the feasibility of the label-free, polarization-sensitive optical coherence tomography (PS-OCT) for distinguishing brain tumors from normal brain tissues. Ex vivo samples were obtained from two patients with grade II and II-III glioma; healthy porcine brain tissues were utilized as the control group. In the results obtained from normal porcine brain, white matter contains significantly higher birefringent property over grey matter indicated by phase retardation. Based on the knowledge obtained from porcine brain experiment, a similar high-hirefringent tissue is observed partially on the edge of the sliced glioma, and such tissue is considered as white matter because glioma originates through the mutation of the healthy white matter's glia cells. Additionally, differences between grey matter and brain tumor are not apparent based on phase retardation images and further histogram analysis. The capability of PS-OCT for distinguishing glioma from white matter is demonstrated. It could he a potential system to facilitate safe and maximum resection area, and finally, lead to ameliorated outcomes.
引用
下载
收藏
页数:7
相关论文
共 50 条
  • [1] Polarization-sensitive interleaved optical coherence tomography
    Duan, Lian
    Marvdashti, Tahereh
    Ellerbee, Audrey K.
    OPTICS EXPRESS, 2015, 23 (10): : 13693 - 13703
  • [2] Endoscopic polarization-sensitive optical coherence tomography
    Pierce, Mark C.
    Shishkov, Milen
    Park, B. Hyle
    Nassif, Nader
    Bouma, Brett E.
    Tearney, Guillermo J.
    de Boer, Johannes F.
    COHERENCE DOMAIN OPTICAL METHODS AND OPTICAL COHERENCE TOMOGRAPHY IN BIOMEDICINE X, 2006, 6079
  • [3] Characterization of ovarian tissue using polarization-sensitive optical coherence tomography
    Wang, Tianheng
    Yang, Yi
    Wang, Xiaohong
    Sanders, Melinda
    Brewer, Molly
    Zhu, Quing
    OPTICAL COHERENCE TOMOGRAPHY AND COHERENCE DOMAIN OPTICAL METHODS IN BIOMEDICINE XVII, 2013, 8571
  • [4] Identification and Characterization of Pseudodrusen using Polarization-Sensitive Optical Coherence Tomography
    Baratsits, Magdalena
    Schlanitz, Ferdinand Georg
    Roberts, Philipp Ken
    Zotter, Stefan
    Baumann, Bernhard
    Pircher, Michael
    Hitzenberger, Christoph K.
    Schmidt-Erfurth, Ursula
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2014, 55 (13)
  • [5] Optical polarization tractography based on polarization-sensitive optical coherence tomography
    Yao, Gang
    Wang, Yuanbo
    Ravanfar, Mohammadreza
    Azinfar, Leila
    Yao, Xuan
    Zhang, Keqing
    Duan, Dongsheng
    OPTICAL COHERENCE TOMOGRAPHY AND COHERENCE DOMAIN OPTICAL METHODS IN BIOMEDICINE XX, 2016, 9697
  • [6] Polarization-sensitive quantum-optical coherence tomography
    Booth, MC
    Di Giuseppe, G
    Saleh, BEA
    Sergienko, AV
    Teich, MC
    PHYSICAL REVIEW A, 2004, 69 (04): : 043815 - 1
  • [7] Noise model for polarization-sensitive optical coherence tomography
    Williams, Paul A.
    Kemp, Nate J.
    Ives, David
    Park, Jesung
    Dwelle, Jordan C.
    Rylander, H. Grady, II
    Milner, Thomas E.
    COHERENCE DOMAIN OPTICAL METHODS AND OPTICAL COHERENCE TOMOGRAPHY IN BIOMEDICINE X, 2006, 6079
  • [8] Polarization-Sensitive Optical Coherence Tomography for Tissue Imaging
    Tang, Shuo
    Zhou, Xin
    2021 PHOTONICS NORTH (PN), 2021,
  • [9] Detection of drusen by polarization-sensitive optical coherence tomography
    Schlanitz, F. G.
    Ahlers, C.
    Baumann, B.
    Spalek, T.
    Schriefl, S.
    Schuetze, C.
    Pircher, M.
    Goetzinger, E.
    Hitzenberger, C. K.
    Schmidt-Erfurth, U.
    ACTA OPHTHALMOLOGICA, 2010, 88 : 36 - 37
  • [10] Polarization-Sensitive Optical Coherence Tomography of Necrotizing Scleritis
    Miura, Masahiro
    Yamanari, Masahiro
    Iwasaki, Takuya
    Itoh, Masahide
    Yatagai, Toyohiko
    Yasuno, Yoshiaki
    OPHTHALMIC SURGERY LASERS & IMAGING, 2009, 40 (06) : 607 - 610