Steady-state polarization measurements of lithium insertion electrodes for high-power lithium-ion batteries

被引:28
|
作者
Ohzuku, Tsutomu [1 ]
Yamato, Ryoji [1 ]
Kawai, Toru [1 ]
Ariyoshi, Kingo [1 ]
机构
[1] Osaka City Univ, Dept Appl Chem, Grad Sch Engn, Osaka 5588585, Japan
关键词
polarization; lithium-ion battery; lithium titanium oxide; insertion electrode;
D O I
10.1007/s10008-007-0464-4
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Steady-state polarization measurements of lithium titanium oxide (LTO; Li[Li1/3Ti5/3]O-4) were carried out using the 0-V lithium-ion cells consisting of two identical LTO-electrodes with a parallel-plate symmetrical electrode configuration. The sinusoidal voltage with the peak amplitude of 1.0 V was imposed at 0.1 Hz upon the 0-V cells and the current response was measured as a function of time. The steady-state polarization, obtained by plotting the current versus applied voltage, was linear in current up to approximately 60 mA cm(-2) or 4 A g(-1) based on the LTO weight and suggested the resistance polarization only for the lithium insertion electrode of the LTO. The method was also applied to lithium aluminum manganese oxide (LAMO; Li[Li0.1Al0.1Mn1.8]O-4) and the resistance polarization of the LAMO-electrode was determined for currents up to approximately 25 mA cm(-2) or 2 A g(-1) based on the LAMO weight. The validity of the results was examined for the polarization measurements of the 2.5-V lithium-ion battery consisting of LTO and LAMO, and the significance of the polarization measurements of lithium insertion electrodes for high-power applications was discussed.
引用
收藏
页码:979 / 985
页数:7
相关论文
共 50 条
  • [1] Steady-state polarization measurements of lithium insertion electrodes for high-power lithium-ion batteries
    Tsutomu Ohzuku
    Ryoji Yamato
    Toru Kawai
    Kingo Ariyoshi
    Journal of Solid State Electrochemistry, 2008, 12 : 979 - 985
  • [2] Progress of high-power lithium-ion batteries
    Chen G.-X.
    Sun X.-Z.
    Zhang X.
    Wang K.
    Ma Y.-W.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2022, 44 (04): : 612 - 624
  • [3] Nanostructured electrodes for high-power lithium ion batteries
    Mukherjee, Rahul
    Krishnan, Rahul
    Lu, Toh-Ming
    Koratkar, Nikhil
    NANO ENERGY, 2012, 1 (04) : 518 - 533
  • [4] Aluminum-doped lithium nickel cobalt oxide electrodes for high-power lithium-ion batteries
    Chen, CH
    Liu, J
    Stoll, ME
    Henriksen, G
    Vissers, DR
    Amine, K
    JOURNAL OF POWER SOURCES, 2004, 128 (02) : 278 - 285
  • [5] Simulation of electrical abuse of high-power lithium-ion batteries
    Li, Zhao
    Niu, Huichang
    Jiang, Xi
    PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON APPLIED ENERGY, 2017, 142 : 3468 - 3473
  • [6] The Control and Management System of High-Power Lithium-Ion Batteries
    Afanas'ev, A. S.
    Boldyrev, M. A.
    Vorontsov, P. S.
    Suslov, V. M.
    Kotov, Yu T.
    Voronitsyn, V. K.
    Kamusin, A. A.
    LESNOY ZHURNAL-FORESTRY JOURNAL, 2019, (01) : 161 - 170
  • [7] Investigation on cell impedance for high-power lithium-ion batteries
    Kang, Dae-Keun
    Shin, Heon-Cheol
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2007, 11 (10) : 1405 - 1410
  • [8] Strategies for Rational Design of High-Power Lithium-ion Batteries
    Yingpeng Wu
    Xiangkang Huang
    Lu Huang
    Junhong Chen
    Energy & Environmental Materials, 2021, 4 (01) : 19 - 45
  • [9] Investigation on cell impedance for high-power lithium-ion batteries
    Dae-Keun Kang
    Heon-Cheol Shin
    Journal of Solid State Electrochemistry, 2007, 11 : 1405 - 1410
  • [10] Strategies for Rational Design of High-Power Lithium-ion Batteries
    Wu, Yingpeng
    Huang, Xiangkang
    Huang, Lu
    Chen, Junhong
    ENERGY & ENVIRONMENTAL MATERIALS, 2021, 4 (01) : 19 - 45