Magnon condensation in dimerized antiferromagnets with spin-orbit coupling

被引:5
|
作者
Zhao, Qi-Rong [1 ]
Sun, Meng-Jie [1 ]
Liu, Zheng-Xin [1 ,2 ,3 ]
Wang, Jiucai [1 ,4 ]
机构
[1] Renmin Univ China, Dept Phys, Beijing 100872, Peoples R China
[2] Shanghai Jiao Tong Univ, Tsung Dao Lee Inst, Shanghai 200240, Peoples R China
[3] Shanghai Jiao Tong Univ, Sch Phys & Astron, Shanghai 200240, Peoples R China
[4] Tsinghua Univ, Inst Adv Study, Beijing 100084, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
BOSE-EINSTEIN CONDENSATION; ROOM-TEMPERATURE; LIQUID;
D O I
10.1103/PhysRevB.105.094401
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Bose-Einstein condensation (BEC) of triplet excitations triggered by a magnetic field, sometimes called magnon BEC, in dimerized antiferromagnets gives rise to a long-range antiferromagnetic order in the plane perpendicular to the applied magnetic field. To explore the effects of spin-orbit coupling on magnon condensation, we study a spin model on a distorted honeycomb lattice with dimerized Heisenberg exchange (J terms) and uniform off-diagonal exchange (Gamma' terms) interactions. Via variational Monte Carlo calculations and spin-wave theory, we find that an out-of-plane magnetic field can induce different types of long-range magnetic orders, no matter if the ground state is a nonmagnetic dimerized state or an ordered Neel state. Furthermore, the critical properties of field-driven phase transitions in the presence of spin-orbit couplings, as illustrated from the spin-wave spectrum and interpreted by the effective field theory, can be different from the conventional magnon BEC. Our study is helpful to understand the rich phases of spin-orbit coupled antiferromagnets induced by magnetic fields.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Magnon Orbital Nernst Effect in Honeycomb Antiferromagnets without Spin-Orbit Coupling
    Go, Gyungchoon
    An, Daehyeon
    Lee, Hyun-Woo
    Kim, Se Kwon
    [J]. NANO LETTERS, 2024, 24 (20) : 5968 - 5974
  • [2] Suppression of effective spin-orbit coupling by thermal fluctuations in spin-orbit coupled antiferromagnets
    Lotze, Jan
    Daghofer, Maria
    [J]. PHYSICAL REVIEW B, 2021, 104 (04)
  • [3] Spin-orbit torque in antiferromagnets
    Song, C.
    Zhou, X.
    Chen, X.
    Zhang, P.
    Shi, G.
    Pan, F.
    [J]. 2018 IEEE INTERNATIONAL MAGNETIC CONFERENCE (INTERMAG), 2018,
  • [4] Spontaneous antisymmetric spin splitting in noncollinear antiferromagnets without spin-orbit coupling
    Hayami, Satoru
    Yanagi, Yuki
    Kusunose, Hiroaki
    [J]. PHYSICAL REVIEW B, 2020, 101 (22)
  • [5] Opposite Effect of Spin-Orbit Coupling on Condensation and Superfluidity
    Zhou, Kezhao
    Zhang, Zhidong
    [J]. PHYSICAL REVIEW LETTERS, 2012, 108 (02)
  • [6] Nonlinear nonreciprocal transport in antiferromagnets free from spin-orbit coupling
    Hayami, Satoru
    Yatsushiro, Megumi
    [J]. PHYSICAL REVIEW B, 2022, 106 (01)
  • [7] Magnon Lifetimes on the Fe(110) Surface: The Role of Spin-Orbit Coupling
    Zakeri, Kh.
    Zhang, Y.
    Chuang, T. -H.
    Kirschner, J.
    [J]. PHYSICAL REVIEW LETTERS, 2012, 108 (19)
  • [8] Condensation of bosons with Rashba-Dresselhaus spin-orbit coupling
    Baym, Gordon
    Ozawa, Tomoki
    [J]. 17TH INTERNATIONAL CONFERENCE ON RECENT PROGRESS IN MANY-BODY THEORIES (MBT17), 2014, 529
  • [9] Thermal spin-orbit torque with Dresselhaus spin-orbit coupling
    Xue, Chun-Yi
    Wang, Ya-Ru
    Wang, Zheng-Chuan
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2024, 97 (02):
  • [10] Spin-orbit force in graphene with Rashba spin-orbit coupling
    Chen, Chien-Liang
    Su, Yu-Hsin
    Chang, Ching-Ray
    [J]. JOURNAL OF APPLIED PHYSICS, 2012, 111 (07)