DIM MOVING TARGET DETECTION USING SPATIO-TEMPORAL ANOMALY DETECTION FOR HYPERSPECTRAL IMAGE SEQUENCES

被引:0
|
作者
Li, Yang [1 ]
Wang, Jinshen [1 ]
Liu, Xiang [2 ]
Xian, Ning [3 ]
Xie, Changsheng [2 ]
机构
[1] Beihang Univ, Image Proc Ctr, Beijing 100191, Peoples R China
[2] CASC, Infrared Detect Technol Res & Dev Ctr, Shanghai Aerosp Control Technol Inst, Shanghai, Peoples R China
[3] Beihang Univ, Sch Automat Sci & Elect Engn, Beijing, Peoples R China
关键词
Dim target detection; Hyperspectral imagery sequences; Anomaly detection; Spatial and temporal processing;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Dim moving target detection from hyperspectral image sequences, which contains temporal information as well as spectral information, has attracted researchers' interest for its crucial role in civil and military application. In this paper, we propose a novel spatio-temporal anomaly approach to solve the dim moving target detection problem. This approach calculates spatial anomaly map, temporal anomaly map using anomaly detection algorithm from spatial domain and temporal domain, respectively. To achieve motion consistency characteristic, this approach manages to generate the trajectory prediction map. After fusing the spatial anomaly map, the temporal anomaly map and the trajectory prediction map, target of interest can be easily detected from background. The proposed approach is applied to a test dataset of airborne target in the cloud clutter background. Experimental results confirm that the proposed approach can achieve a low false alarm rate as well as a high probability of detection.
引用
收藏
页码:7086 / 7089
页数:4
相关论文
共 50 条
  • [1] A rapid detection method for dim moving target in hyperspectral image sequences
    Wang, Jinshen
    Li, Yang
    INFRARED PHYSICS & TECHNOLOGY, 2019, 102
  • [2] A novel spatio-temporal saliency approach for robust dim moving target detection from airborne infrared image sequences
    Li, Yansheng
    Zhang, Yongjun
    Yu, Jin-Gang
    Tan, Yihua
    Tian, Jinwen
    Ma, Jiayi
    INFORMATION SCIENCES, 2016, 369 : 548 - 563
  • [3] Moving infrared dim and small target detection by mixed spatio-temporal encoding
    Peng, Shuang
    Ji, Luping
    Chen, Shengjia
    Duan, Weiwei
    Zhu, Sicheng
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 144
  • [4] Anomaly detection with a moving camera using spatio-temporal codebooks
    Mateus T. Nakahata
    Lucas A. Thomaz
    Allan F. da Silva
    Eduardo A. B. da Silva
    Sergio L. Netto
    Multidimensional Systems and Signal Processing, 2018, 29 : 1025 - 1054
  • [5] Anomaly detection with a moving camera using spatio-temporal codebooks
    Nakahata, Mateus T.
    Thomaz, Lucas A.
    da Silva, Allan F.
    da Silva, Eduardo A. B.
    Netto, Sergio L.
    MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2018, 29 (03) : 1025 - 1054
  • [6] Dim moving target detection algorithm based on spatio-temporal classification sparse representation
    Li, Zhengzhou
    Dai, Zhen
    Fu, Hongxia
    Hou, Qian
    Wang, Zhen
    Yang, Lijiao
    Jin, Gang
    Liu, Changju
    Li, Ruzhang
    INFRARED PHYSICS & TECHNOLOGY, 2014, 67 : 273 - 282
  • [7] Dim moving target detection algorithm based on spatio-temporal classification sparse representation
    Li, Zhengzhou
    Dai, Zhen
    Fu, Hongxia
    Hou, Qian
    Wang, Zhen
    Yang, Lijiao
    Jin, Gang
    Liu, Changju
    Li, Ruzhang
    Infrared Physics and Technology, 2014, 67 : 273 - 282
  • [8] Dim moving target detection algorithm based on spatio-temporal classification sparse representation
    Li, Zhengzhou
    Dai, Zhen
    Fu, Hongxia
    Hou, Qian
    Wang, Zhen
    Yang, Lijiao
    Jin, Gang
    Liu, Changju
    Li, Ruzhang
    Infrared Physics and Technology, 2014, 67 : 273 - 282
  • [9] Object detection using spatio-temporal thresholding in image sequences
    Cho, JH
    Kim, SD
    ELECTRONICS LETTERS, 2004, 40 (18) : 1109 - 1110
  • [10] Dim and Small Target Detection Based on Spatio-Temporal Jitter Estimation
    Fan, Xiangsuo
    Li, Tingting
    Huang, Qing-Nan
    Qin, Wenlin
    Min, Lei
    Gao, Yuan
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74