Research on Hanger Force and Main Arch Stability of Long-Span Concrete-Filled Steel Tube Arch Bridge

被引:0
|
作者
Wu, Yanli [1 ]
Qiu, Mowei [1 ]
Ma, Shaokun [2 ]
Gao, Xinlei [3 ]
Han, Yahong [3 ]
机构
[1] Huanghe Jiaotong Univ, Wuzhi 454950, Henan, Peoples R China
[2] Guangxi Univ, Sch Civil Engn, Nanning 530004, Peoples R China
[3] Urban Water Resources Co Ltd, Natl Engn Res Ctr, Harbin Inst Technol, Harbin 150006, Peoples R China
关键词
D O I
10.1155/2022/3541528
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In recent years, the construction of a CFST arch bridge has developed rapidly; however, as a kind of structural system dominated by compression, with the increase of material strength and span, the stability of the main arch of the CFST arch bridge has become more and more important. In this paper, the finite element method is used to analyze the hanger force and the main arch stability of the long-span CFST arch bridge. Combined with the Shenzhen Rainbow Bridge project, the axial force of the hanger, the internal force, and stability of the main arch of the arch bridge are studied. In the establishment of the finite element model, considering the actual operation of the arch bridge, the model simulates the interaction between steel pipe and concrete, it studies the large deformation of CFST arch bridges, and the stress distribution and overall stability of the arch bridge are analyzed. The results show that the main deformation of the CFST arch bridge is the vertical displacement of the deck, and the axial force of most members of the upper arch ribs is greater than that of the lower arch ribs. The axial force and bending moment of the lower arch rib near the arch foot are larger, and the compressive stress of the arch foot is greater than that of other positions. The axial force of the suspender of the arch bridge is the largest at both ends of the hanger and the middle hanger, and the axial force of the other hanger is close to each other, and the axial force changes little under the same case. The buckling modes of the arch are mainly the lateral buckling or flexural buckling of the arch rib outside the plane, which indicates that the vertical stiffness of the arch bridge structure is larger than that of the transverse stiffness. The research results make the load-bearing mechanism of the CFST arch bridge more clear and also provide a certain reference for the design and construction of the CFST arch bridge.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Research on Hanger Force and Main Arch Stability of Long-Span Concrete-Filled Steel Tube Arch Bridge
    Wu, Yanli
    Qiu, Mowei
    Ma, Shaokun
    Gao, Xinlei
    Han, Yahong
    GEOFLUIDS, 2022, 2022
  • [2] Global stability analysis of an asymmetrical long-span concrete-filled steel tube arch bridge
    Li, Shengyong
    Kohlmeyer, Christian
    Mueller, Frank
    Chen, Baochun
    PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON ARCH BRIDGES (ARCH '10), 2010, : 716 - 722
  • [3] Study on the safety of the concrete pouring process for the main truss arch structure in a long-span concrete-filled steel tube arch bridge
    Xie, Kaizhong
    Wang, Hongwei
    Guo, Xiao
    Zhou, Jianxi
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2021, 28 (07) : 731 - 740
  • [4] Study of creep effects in a long-span concrete-filled steel tube arch bridge
    Zeng, Yong
    Zhong, Huadong
    Liu, Chengcai
    Tan, Hongmei
    Gu, An-bang
    PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-STRUCTURES AND BUILDINGS, 2018, 171 (08) : 642 - 658
  • [5] Nonlinear Stability Analysis on the concrete casting step of Long-span Concrete-filled Steel Tube Arch Bridge
    Wang Ji
    Zhang Ming-zhong
    Guo Xiao-li
    ADVANCED MATERIALS SCIENCE AND TECHNOLOGY, 2009, 614 : 275 - 281
  • [6] Dynamic control of the arch rib alignment for long-span concrete-filled steel-tube arch bridge
    Zhang, Kaiyin
    Liu, Sanyuan
    He, Yuwei
    Yi, Guangming
    Wuhan Jiaotong Keji Daxue Xuebao/Journal of Wuhan Transportation University, 2000, 24 (01): : 1 - 4
  • [7] Research on the Key Technology of Suspender Replacement of Long-span Concrete-filled Steel Tubular Arch Bridge
    Wang, Fei
    Journal of Railway Engineering Society, 2021, 38 (12): : 61 - 67
  • [8] The structural dynamic analysis of long-span arch bridge of concrete filled steel tube
    Xu, XF
    He, XF
    Tang, GW
    Huang, FW
    ICVE'98: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON VIBRATION ENGINEERING, VOL I, 1998, : 393 - 396
  • [9] A Study on the Ultimate Span of a Concrete-Filled Steel Tube Arch Bridge
    Wu, Yuexing
    Wang, Xiangchuan
    Fan, Yonghui
    Shi, Jun
    Luo, Chao
    Wang, Xinzhong
    BUILDINGS, 2024, 14 (04)
  • [10] The Stability Analysis of the Concrete-Filled Steel Tube Arch Bridge
    Sun, Qiu-yan
    Qian, Xiao-jun
    3RD INTERNATIONAL CONFERENCE ON CIVIL ENGINEERING, ARCHITECTURE AND SUSTAINABLE INFRASTRUCTURE, ICCEASI 2015, 2015, : 748 - 753