The R-completion of closure spaces

被引:3
|
作者
Zhang, Zhongxi [1 ,2 ]
Shi, Fu-Gui [1 ]
Li, Qingguo [3 ]
机构
[1] Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
[2] Yantai Univ, Sch Comp & Control Engn, Yantai 264005, Shandong, Peoples R China
[3] Hunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
R-completion; Sober space; Subset system; Z-convergence space; Z-completion; Closure space; CATEGORY; POSETS;
D O I
10.1016/j.topol.2021.107873
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a full subcategory R of the category CL0 of T-0 closure spaces satisfying certain conditions. We give a construction for the universal R-completion of T-0 closure spaces, which is a categorical reflection of the category CL0 onto the full subcategory R. The category CSZ of Z-convergence spaces is such a category R, where Z is a subset system on the category CL0. Hence the Z-completion is a special case of the R-completion. Specifically, the subset system Z is no longer required to be hereditary. Conversely, for every such category R, there is a subset system Z such that R = CSZ. Thus the R-completion and the Z-completion are in fact of the same level. In the case that Z is coarser than the subset system I of irreducible sets, the Z-completion can be restricted to the setting of topological spaces. The sobrification, the bounded sobrification, the D-completion, the conditional D-completion, the well filterification, the K-completion of topological spaces are shown to be special cases of the Z-completion. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Mapping spaces and R-completion
    David Blanc
    Debasis Sen
    Journal of Homotopy and Related Structures, 2018, 13 : 635 - 671
  • [2] Mapping spaces and R-completion
    Blanc, David
    Sen, Debasis
    JOURNAL OF HOMOTOPY AND RELATED STRUCTURES, 2018, 13 (03) : 635 - 671
  • [3] Exponential MR-Groups: Faithful R-Completion
    M. G. Amaglobeli
    Doklady Mathematics, 2019, 99 : 263 - 265
  • [4] Exponential MR-Groups: Faithful R-Completion
    Amaglobeli, M. G.
    DOKLADY MATHEMATICS, 2019, 99 (03) : 263 - 265
  • [5] THE COMPLETION OF TRIANGULAR SPACES
    BEUTELSPACHER, A
    GANTER, B
    ARCHIV DER MATHEMATIK, 1986, 47 (02) : 182 - 184
  • [6] ON THE COMPLETION OF (LF)-SPACES
    GARCIALAFUENTE, JM
    MONATSHEFTE FUR MATHEMATIK, 1987, 103 (02): : 115 - 120
  • [7] COMPLETION OF BORNOLOGICAL SPACES
    HOGBENLEND, H
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1969, 268 (07): : 382 - +
  • [8] COMPLETION OF MOORE SPACES
    GREEN, JW
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (03): : A345 - A345
  • [9] COMPACTIFICATION AND COMPLETION AS ABSOLUTE CLOSURE
    HAGER, AW
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 40 (02) : 635 - 638
  • [10] On the combination of congruence closure and completion
    Scharff, C
    Bachmair, L
    ARTIFICIAL INTELLIGENCE AND SYMBOLIC COMPUTATION, PROCEEDINGS, 2004, 3249 : 103 - 117