SUPERPIXEL-BASED NONNEGATIVE TENSOR FACTORIZATION FOR HYPERSPECTRAL UNMIXING

被引:0
|
作者
Xiong, Fengchao [1 ]
Chen, Jingzhou [1 ]
Zhou, Jun [2 ]
Qian, Yuntao [1 ]
机构
[1] Zhejiang Univ, Coll Comp Sci, Hangzhou, Zhejiang, Peoples R China
[2] Griffith Univ, Sch Informat & Commun Technol, Nathan, Qld, Australia
基金
中国国家自然科学基金;
关键词
Hyperspectral unmixing; joint spectralspatial information; superpixel; nonnegative tensor factorization;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Hyperspectral unmixing aims at decomposing a hyperspectral image (HSI) into a number of constituted materials and associated proportions. Recently, nonnegative tensor factorization (NTF) based methods have been proved effective and natural for hyperspectral unmixing owing to their virtue of representing an HSI without any information loss. However, these methods take an HSI as a whole, partly ignoring the local information in distinct local regions. In addition, HSIs are high likely to be disturbed by various noise, making the global information unnecessarily reliable. To alleviate these drawbacks, we propose a superpixel-based matrix-vector nonnegative tensor factorization (S-MV-NTF) method for hyperspectral unmixing, where both the global information and local information are taken into consideration. In this method, the HSI is firstly partitioned into numerous superpixels, homogeneous regions with adaptive sizes and compact boundaries, representing the local spatial structure information. Then, such local information is integrated to the tensor factorization to make the pixels lying in the same superpixel share similar abundances. Experimental results on synthetic data and real-world data show that the proposed method dominates the state-of-the-art methods.
引用
收藏
页码:6392 / 6395
页数:4
相关论文
共 50 条
  • [1] Superpixel-based Spatial Weighted Sparse Nonnegative Tensor Factorization Unmixing Algorithm
    Zhang, Ningyuan
    Deng, Chengzhi
    Zhang, Shaoquan
    Li, Fan
    Lai, Pengfei
    Huang, Min
    Wang, Shengqian
    [J]. EARTH AND SPACE: FROM INFRARED TO TERAHERTZ, ESIT 2022, 2023, 12505
  • [2] Superpixel-Based Low-Rank Tensor Factorization for Blind Nonlinear Hyperspectral Unmixing
    Li, Heng-Chao
    Feng, Xin-Ru
    Wang, Rui
    Gao, Lianru
    Du, Qian
    [J]. IEEE SENSORS JOURNAL, 2024, 24 (08) : 13055 - 13072
  • [3] SUPERPIXEL-BASED HYPERSPECTRAL UNMIXING WITH REGIONAL SEGMENTATION
    Alkhatib, Mohammed Q.
    Velez-Reyes, Miguel
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 6384 - 6387
  • [4] Double Weighted Sparse Nonnegative Tensor Factorization for Hyperspectral Unmixing
    Li, Heng-Chao
    Liu, Shuang
    Feng, Xin-Ru
    Wang, Rui
    Sun, Yong-Jian
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2021, 42 (08) : 3180 - 3191
  • [5] Hyperspectral unmixing based on nonnegative matrix factorization
    Liu Xue-Song
    Wang Bin
    Zhang Li-Ming
    [J]. JOURNAL OF INFRARED AND MILLIMETER WAVES, 2011, 30 (01) : 27 - +
  • [6] Superpixel-Based Graph Laplacian Regularization for Sparse Hyperspectral Unmixing
    Ince, Taner
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [7] Superpixel-based local collaborative sparse unmixing for hyperspectral image
    Cui, Ying
    Wang, Heng
    Zhu, Haifeng
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2019, 13 (01):
  • [8] Hyperspectral Unmixing via Total Variation Regularized Nonnegative Tensor Factorization
    Xiong, Fengchao
    Qian, Yuntao
    Zhou, Jun
    Tang, Yuan Yan
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (04): : 2341 - 2357
  • [9] NONLOCAL LOW-RANK NONNEGATIVE TENSOR FACTORIZATION FOR HYPERSPECTRAL UNMIXING
    Xiong, Fengchao
    Qian, Kun
    Ltd, Jianfeng
    Zhou, Jun
    Qian, Yuntao
    [J]. IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 2157 - 2160
  • [10] Endmember independence constrained hyperspectral unmixing via nonnegative tensor factorization
    Wang, Jin-Ju
    Wang, Ding-Cheng
    Huang, Ting-Zhu
    Huang, Jie
    Zhao, Xi-Le
    Deng, Liang-Jian
    [J]. KNOWLEDGE-BASED SYSTEMS, 2021, 216