Effect of Carbonized 2-Methylnaphthalene on the Hydrogen Storage Performance of MgH2

被引:6
|
作者
Zhou, Shuhua [1 ]
Zhang, Wei [1 ]
Wang, Wenfeng [1 ]
Fu, Yaokun [1 ]
Yu, Han [1 ]
Zhang, Lu [1 ,2 ]
Song, Jianzheng [1 ]
Cheng, Ying [3 ]
Han, Shumin [1 ,2 ]
机构
[1] Yanshan Univ, Sch Environm & Chem Engn, Qinhuangdao 066004, Hebei, Peoples R China
[2] Yanshan Univ, State Key Lab Metastable Mat Sci & Technol, Qinhuangdao 066004, Hebei, Peoples R China
[3] Hebei Univ Environm Engn, Qinhuangdao 066102, Hebei, Peoples R China
来源
ACS APPLIED ENERGY MATERIALS | 2021年 / 4卷 / 10期
基金
中国国家自然科学基金;
关键词
magnesium hydride; hydrogen storage; 2-methylnaphthalene; dehydrogenation kinetics; hydrogenation kinetics; SORPTION KINETICS; MAGNESIUM; HYDRIDE; DEHYDROGENATION; ENERGY; NANOCOMPOSITES; NANOPARTICLES; SPECTROSCOPY; DESORPTION; MECHANISM;
D O I
10.1021/acsaem.1c02250
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Mg-based hydride materials (MgH2) are in the spotlight of hydrogen storage due to their high gravimetric density. Yet, its large-scale utilization is limited by the poor thermodynamic stability and slow kinetics. Herein, we report a novel and straightforward way to prepare MgH2 with amorphous carbon by cosintering 2-methylnaphthalene (CMN) organics with pure Mg and a hydriding combustion synthesis method, where the amorphous carbon formed from the CMN not only improves the dehydrogenation/hydrogenation capacity but also enhances the kinetics of the Mg/MgH2 system. The dehydrogenation capacity of the CMN-MgH2 composite reaches 4.88 wt % of H-2 at 623 K, nearly 2 times of pure MgH2, and its onset dehydrogenation temperature decreases to 560 K, 90 K lower than that of pure MgH2; in addition, at a lower temperature of 473 K, the composite remarkably absorbs 4.54 wt % of H-2 within 42 s while the absorption is only 0.71 wt % H-2 for the pure MgH2. Moreover, the activation energy greatly decreases from 165.35 to 101.52 kJ/mol. Further research reveals that the evolution of hydrogenation changes from a three-dimensional diffusion process to a one-dimensional diffusion process, attributed to the formation of the amorphous carbon. This work is expected to provide inspiration to design and prepare effective additives for the improvement of hydrogen storage performance of Mg-based hydrides.
引用
收藏
页码:11505 / 11513
页数:9
相关论文
共 50 条
  • [1] The catalytic effect of spherical NiMOF on the hydrogen storage performance of MgH2
    Zhang, Runyu
    Sui, Yudong
    Jiang, Yehua
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 93 : 726 - 735
  • [2] Effect of LiH on hydrogen storage property of MgH2
    Leng, Haiyan
    Pan, Yanbiao
    Li, Qian
    Chou, Kuo-Chih
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (25) : 13622 - 13627
  • [3] Effect of CO on hydrogen storage performance of 2LiNH2 + MgH2 system
    Sun, Fei
    Yan, Min-yan
    Liu, Xiao-peng
    Ye, Jian-hua
    Li, Zhi-nian
    Wang, Shu-mao
    Jiang, Li-jun
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (17) : 9288 - 9292
  • [4] Review on Hydrogen Storage Performance of MgH2: Development and Trends
    Hou, Quanhui
    Yang, Xinglin
    Zhang, Jiaqi
    CHEMISTRYSELECT, 2021, 6 (07): : 1589 - 1606
  • [5] Empowering hydrogen storage performance of MgH2 by nanoengineering and nanocatalysis
    Zhang, X. L.
    Liu, Y. F.
    Zhang, X.
    Hu, J. J.
    Gao, M. X.
    Pan, H. G.
    MATERIALS TODAY NANO, 2020, 9
  • [6] Effect of Carbon Material on Hydrogen Storage in Mg/MgH2
    Zhu, Xueqin
    Yang, Minjian
    Wu, Changxu
    Jinlian, E.
    Meng, Wanyin
    He, Jing
    Chen, Yang
    Ma, Liqiang
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A, 2023, 97 (08) : 1816 - 1821
  • [7] Effect of Carbon Material on Hydrogen Storage in Mg/MgH2
    Xueqin Zhu
    Minjian Yang
    Changxu Wu
    Jinlian E
    Wanyin Meng
    Jing He
    Yang Chen
    Liqiang Ma
    Russian Journal of Physical Chemistry A, 2023, 97 : 1816 - 1821
  • [8] Synergistic Effect of the Hydrogen Pump and Heterostructure Enables Superior Hydrogen Storage Performance of MgH2
    Qi, Yichen
    Zhang, Zeyang
    Tang, Qinke
    Liu, Jiangchuan
    Shi, Rui
    Zhang, Jiguang
    Liu, Yana
    Wang, Jun
    Zhang, Jiankun
    Chen, Shihao
    Zhu, Yunfeng
    CHEMISTRY OF MATERIALS, 2024, 36 (12) : 6288 - 6298
  • [9] MgH2 + FeNb nanocomposites for hydrogen storage
    Santos, S. F.
    Ishikawa, T. T.
    Botta, W. J.
    Huot, J.
    MATERIALS CHEMISTRY AND PHYSICS, 2014, 147 (03) : 557 - 562
  • [10] Hydrogen Storage Properties of Pure MgH2
    Kwak, Young Jun
    Lee, Seong Ho
    Park, Hye Ryoung
    Song, Myoung Youp
    KOREAN JOURNAL OF MATERIALS RESEARCH, 2013, 23 (05): : 266 - 270