Machine Learning in Screening High Performance Electrocatalysts for CO2 Reduction

被引:76
|
作者
Zhang, Ning [1 ]
Yang, Baopeng [2 ]
Liu, Kang [2 ]
Li, Hongmei [2 ]
Chen, Gen [1 ]
Qiu, Xiaoqing [3 ]
Li, Wenzhang [3 ]
Hu, Junhua [4 ]
Fu, Junwei [2 ]
Jiang, Yong [1 ]
Liu, Min [2 ]
Ye, Jinhua [5 ]
机构
[1] Cent South Univ, Sch Mat Sci & Engn, Changsha 410083, Hunan, Peoples R China
[2] Cent South Univ, Sch Phys Sci & Elect, Changsha 410083, Hunan, Peoples R China
[3] Cent South Univ, Coll Chem & Chem Engn, Changsha 410083, Hunan, Peoples R China
[4] Zhengzhou Univ, Sch Mat Sci & Engn, Zhengzhou 450002, Peoples R China
[5] Natl Inst Mat Sci NIMS, Int Ctr Mat Nanoarchitecton WPI MANA, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
基金
中国国家自然科学基金;
关键词
CO2; reduction; electrocatalysts; high throughput calculations; machine learning; theoretical calculations; ELECTROCHEMICAL REDUCTION; CARBON-DIOXIDE; ELECTRONIC-STRUCTURE; HYDROGEN EVOLUTION; OXYGEN EVOLUTION; FORMIC-ACID; AQUEOUS CO2; ELECTROREDUCTION; CATALYSTS; CONVERSION;
D O I
10.1002/smtd.202100987
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Converting CO2 into carbon-based fuels is promising for relieving the greenhouse gas effect and the energy crisis. However, the selectivity and efficiency of current electrocatalysts for CO2 reductions are still not satisfactory. In this paper, the development of machine learning methods in screening CO2 reduction electrocatalysts over the recent years is reviewed. Through high-throughput calculation of some key descriptors such as adsorption energies, d-band center, and coordination number by well-constructed machine learning models, the catalytic activity, optimal composition, active sites, and CO2 reduction reaction pathway over various possible materials can be predicted and understood. Machine learning is now realized as a fast and low-cost method to effectively explore high performance electrocatalysts for CO2 reduction.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] A Machine Learning Model on Simple Features for CO2 Reduction Electrocatalysts
    Chen, An
    Zhang, Xu
    Chen, Letian
    Yao, Sai
    Zhou, Zhen
    JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (41): : 22471 - 22478
  • [2] Machine learning accelerated calculation and design of electrocatalysts for CO2 reduction
    Sun, Zhehao
    Yin, Hang
    Liu, Kaili
    Cheng, Shuwen
    Li, Gang Kevin
    Kawi, Sibudjing
    Zhao, Haitao
    Jia, Guohua
    Yin, Zongyou
    SMARTMAT, 2022, 3 (01): : 68 - 83
  • [3] Advanced electrocatalysts for CO2 and CO reduction
    Raciti, David
    Wang, Yuxuan
    Wang, Chao
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [4] Heterogeneous Electrocatalysts for CO2 Reduction
    Yang, Chao
    Wang, Yuhang
    Qian, Linping
    Al-Enizi, Abdullah M.
    Zhang, Lijuan
    Zheng, Gengfeng
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (02): : 1034 - 1044
  • [5] Bimetallic Electrocatalysts for CO2 Reduction
    Zhu, Wenlei
    Tackett, Brian M.
    Chen, Jingguang G.
    Jiao, Feng
    TOPICS IN CURRENT CHEMISTRY, 2018, 376 (06)
  • [6] Polypyridyl electrocatalysts for the reduction of CO2
    Lieske, Lauren
    Machan, Charles
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [7] Bimetallic Electrocatalysts for CO2 Reduction
    Wenlei Zhu
    Brian M. Tackett
    Jingguang G. Chen
    Feng Jiao
    Topics in Current Chemistry, 2018, 376
  • [8] Accelerated discovery of CO2 electrocatalysts using active machine learning
    Zhong, Miao
    Tran, Kevin
    Min, Yimeng
    Wang, Chuanhao
    Wang, Ziyun
    Dinh, Cao-Thang
    De Luna, Phil
    Yu, Zongqian
    Rasouli, Armin Sedighian
    Brodersen, Peter
    Sun, Song
    Voznyy, Oleksandr
    Tan, Chih-Shan
    Askerka, Mikhail
    Che, Fanglin
    Liu, Min
    Seifitokaldani, Ali
    Pang, Yuanjie
    Lo, Shen-Chuan
    Ip, Alexander
    Ulissi, Zachary
    Sargent, Edward H.
    NATURE, 2020, 581 (7807) : 178 - +
  • [9] Accelerated discovery of CO2 electrocatalysts using active machine learning
    Miao Zhong
    Kevin Tran
    Yimeng Min
    Chuanhao Wang
    Ziyun Wang
    Cao-Thang Dinh
    Phil De Luna
    Zongqian Yu
    Armin Sedighian Rasouli
    Peter Brodersen
    Song Sun
    Oleksandr Voznyy
    Chih-Shan Tan
    Mikhail Askerka
    Fanglin Che
    Min Liu
    Ali Seifitokaldani
    Yuanjie Pang
    Shen-Chuan Lo
    Alexander Ip
    Zachary Ulissi
    Edward H. Sargent
    Nature, 2020, 581 : 178 - 183
  • [10] The importance of a charge transfer descriptor for screening potential CO2 reduction electrocatalysts
    Stefan Ringe
    Nature Communications, 14