All-Instances Termination of Chase is Undecidable

被引:0
|
作者
Gogacz, Tomasz [1 ]
Marcinkowski, Jerzy [1 ]
机构
[1] Univ Wroclaw, Inst Comp Sci, PL-50138 Wroclaw, Poland
关键词
PROGRAMS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We show that all-instances termination of chase is undecidable. More precisely, there is no algorithm deciding, for a given set T consisting of Tuple Generating Dependencies (a.k.a. Datalog. program), whether the T-chase on D will terminate for every finite database instance D. Our method applies to Oblivious Chase, Semi-Oblivious Chase and - after a slight modification - also for Standard Chase. This means that we give a (negative) solution to the all-instances termination problem for all version of chase that are usually considered. The arity we need for our undecidability proof is three. We also show that the problem is EXPSPACE-hard for binary signatures, but decidability for this case is left open. Both the proofs - for ternary and binary signatures - are easy. Once you know them.
引用
收藏
页码:293 / 304
页数:12
相关论文
共 50 条
  • [1] All-Instances Restricted Chase Termination
    Gogacz, Tomasz
    Marcinkowski, Jerzy
    Pieris, Andreas
    PODS'20: PROCEEDINGS OF THE 39TH ACM SIGMOD-SIGACT-SIGAI SYMPOSIUM ON PRINCIPLES OF DATABASE SYSTEMS, 2020, : 245 - 258
  • [2] All-Instances Oblivious Chase Termination is Undecidable for Single-Head Binary TGDs
    Bednarczyk, Bartosz
    Ferens, Robert
    Ostropolski-Nalewaja, Piotr
    PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 1719 - 1725
  • [3] All-Instances Restricted Chase Termination for Linear TGDs
    Tomasz Gogacz
    Jerzy Marcinkowski
    Andreas Pieris
    KI - Künstliche Intelligenz, 2020, 34 : 465 - 473
  • [4] All-Instances Restricted Chase Termination for Linear TGDs
    Gogacz, Tomasz
    Marcinkowski, Jerzy
    Pieris, Andreas
    KUNSTLICHE INTELLIGENZ, 2020, 34 (04): : 465 - 473
  • [5] Linear Termination is Undecidable
    Mitterwallner, Fabian
    Middeldorp, Aart
    Thiemann, Rene
    PROCEEDINGS OF THE 39TH ANNUAL ACM/IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE, LICS 2024, 2024,
  • [6] INDEPENDENT INSTANCES FOR SOME UNDECIDABLE PROBLEMS
    CALUDE, C
    PAUN, G
    RAIRO-INFORMATIQUE THEORIQUE ET APPLICATIONS-THEORETICAL INFORMATICS AND APPLICATIONS, 1983, 17 (01): : 49 - 54
  • [7] INDEPENDENT INSTANCES FOR SOME UNDECIDABLE PROBLEMS
    CALUDE, C
    PAUN, G
    JOURNAL OF SYMBOLIC LOGIC, 1984, 49 (02) : 686 - 686
  • [8] On the Termination of the Chase Algorithm
    Meier, Michael
    WEB REASONING AND RULE SYSTEMS, 2010, 6333 : 239 - 243
  • [9] Total termination of term rewriting is undecidable
    Zantema, H
    JOURNAL OF SYMBOLIC COMPUTATION, 1995, 20 (01) : 43 - 60
  • [10] UNIFORM RESTRICTED CHASE TERMINATION
    Gogacz, Tomasz
    Marcinkowski, Jerzy
    Pieris, Andreas
    SIAM JOURNAL ON COMPUTING, 2023, 52 (03) : 641 - 683