Integrating Brain Implants With Local and Distributed Computing Devices: A Next Generation Epilepsy Management System

被引:75
|
作者
Kremen, Vaclav [1 ,2 ,3 ]
Brinkmann, Benjamin H. [1 ,3 ]
Kim, Inyong [1 ]
Guragain, Hari [1 ]
Nasseri, Mona [1 ]
Magee, Abigail L. [1 ]
Attia, Tal Pal [1 ,3 ]
Nejedly, Petr [1 ,3 ,4 ]
Sladky, Vladimir [1 ,3 ,4 ]
Nelson, Nathanial [1 ]
Chang, Su-Youne [5 ]
Herron, Jeffrey A. [6 ]
Adamski, Tom [6 ]
Baldassano, Steven [7 ]
Cimbalnik, Jan [1 ,4 ]
Vasoli, Vince [6 ]
Fehrmann, Elizabeth [6 ]
Chouinard, Tom [6 ]
Patterson, Edward E. [8 ]
Litt, Brian [7 ]
Stead, Matt [1 ,3 ]
Van Gompel, Jamie [5 ]
Sturges, Beverly K. [9 ]
Jo, Hang Joon [5 ,10 ]
Crowe, Chelsea M. [11 ]
Denison, Timothy [6 ]
Worrell, Gregory A. [1 ,3 ]
机构
[1] Mayo Clin, Mayo Syst Electrophysiol Lab, Dept Neurol, Rochester, MN 55905 USA
[2] Czech Tech Univ, Czech Inst Informat Robot & Cybernet, Prague 16000, Czech Republic
[3] Mayo Clin, Dept Physiol & Biomed Engn, Rochester, MN 55905 USA
[4] St Annes Univ Hosp, Int Clin Res Ctr, Brno 65691, Czech Republic
[5] Mayo Clin, Dept Neurosurg, Rochester, MN 55905 USA
[6] Medtronic, Restorat Therapy Grp, Res & Core Technol, Minneapolis, MN 55432 USA
[7] Univ Penn, Ctr Neuroengn & Therapeut, Dept Bioengn, Philadelphia, PA 19104 USA
[8] Univ Minnesota, Dept Vet Clin Sci, Coll Vet Med, St Paul, MN 55108 USA
[9] Univ Calif Davis, Dept Surg & Radiol Sci, Davis, CA 95616 USA
[10] Mayo Clin, Dept Neurol, Rochester, MN 55905 USA
[11] Univ Calif Davis, Vet Med Teaching Hosp, Davis, CA 95616 USA
基金
美国国家卫生研究院;
关键词
Epilepsy; deep brain stimulation; implantable devices; seizure detection; seizure prediction; distributed computing; RESPONSIVE CORTICAL STIMULATION; PULSE ELECTRICAL-STIMULATION; LONG-TERM; HUMAN SEIZURE; TRIAL; DOGS; ELECTROENCEPHALOGRAPHY; PREDICTION; KNOWLEDGE; EFFICACY;
D O I
10.1109/JTEHM.2018.2869398
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Brain stimulation has emerged as an effective treatment for a wide range of neurological and psychiatric diseases. Parkinson's disease, epilepsy, and essential tremor have FDA indications for electrical brain stimulation using intracranially implanted electrodes. Interfacing implantable brain devices with local and cloud computing resources have the potential to improve electrical stimulation efficacy, disease tracking, and management. Epilepsy, in particular, is a neurological disease that might benefit from the integration of brain implants with off-the-body computing for tracking disease and therapy. Recent clinical trials have demonstrated seizure forecasting, seizure detection, and therapeutic electrical stimulation in patients with drug-resistant focal epilepsy. In this paper, we describe a next-generation epilepsy management system that integrates local handheld and cloud-computing resources wirelessly coupled to an implanted device with embedded payloads (sensors, intracranial EEG telemetry, electrical stimulation, classifiers, and control policy implementation). The handheld device and cloud computing resources can provide a seamless interface between patients and physicians, and realtime intracranial EEG can be used to classify brain state (wake/sleep, preseizure, and seizure), implement control policies for electrical stimulation, and track patient health. This system creates a flexible platform in which low demand analytics requiring fast response times are embedded in the implanted device and more complex algorithms are implemented in off the body local and distributed cloud computing environments. The system enables tracking and management of epileptic neural networks operating over time scales ranging from milliseconds to months.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Epilepsy Management System: Integrating Brain Implants, Personal Assist Devices And The Cloud
    Kremen, V.
    Brinkmann, B. H.
    Kim, I.
    Guragain, H.
    Nasseri, M.
    Magee, A. L.
    Chang, S. -Y.
    Herron, J. A.
    Adamski, T.
    Baldassano, S.
    Cimbalnik, J.
    Vasoli, V.
    Fehrmann, E.
    Chouinard, T.
    Patterson, E. E.
    Litt, B.
    Stead, M.
    Gompel, J. V.
    Sturges, B.
    Denison, T.
    Worrell, G. A.
    EPILEPSIA, 2018, 59 : S220 - S221
  • [2] Next Generation Workload Management System For Big Data on Heterogeneous Distributed Computing
    Klimentov, A.
    Buncic, P.
    De, K.
    Jha, S.
    Maeno, T.
    Mount, R.
    Nilsson, P.
    Oleynik, D.
    Panitkin, S.
    Petrosyan, A.
    Porter, R. J.
    Read, K. F.
    Vaniachine, A.
    Wells, J. C.
    Wenaus, T.
    16TH INTERNATIONAL WORKSHOP ON ADVANCED COMPUTING AND ANALYSIS TECHNIQUES IN PHYSICS RESEARCH (ACAT2014), 2015, 608
  • [3] Next Generation Distributed Computing for Cancer Research
    Agarwal, Pankaj
    Owzar, Kouros
    CANCER INFORMATICS, 2014, 13 : 97 - 109
  • [4] Mobile agents: The next generation in distributed computing
    Gray, R
    Kotz, D
    Nog, S
    Rus, D
    Cybenko, G
    SECOND AIZU INTERNATIONAL SYMPOSIUM ON PARALLEL ALGORITHMS/ARCHITECTURE SYNTHESIS, PROCEEDINGS, 1997, : 8 - 24
  • [5] Integrating multimedia streams into a distributed computing system
    Murphy, BJ
    Mapp, GE
    MULTIMEDIA COMPUTING AND NETWORKING 1996, 1996, 2667 : 312 - 319
  • [6] Next generation database relational solutions for ATLAS distributed computing
    Dimitrov, G.
    Maeno, T.
    Garonne, V.
    20TH INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS (CHEP2013), PARTS 1-6, 2014, 513
  • [7] Neuromorphic Devices and Architectures for Next-Generation Cognitive Computing
    Burr, Geoffrey W.
    Narayanan, Pritish
    Shelby, Robert M.
    Ambrogio, Stefano
    Tsai, Hsinyu
    Lewis, Scott L.
    Hosokawa, Kohji
    2017 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2017, : 23 - 26
  • [8] Next Generation Radio over Fiber Network Management for a Distributed Antenna System
    Santiago, Carlos
    Gangopadhyay, Bodhisattwa
    Arsenio, Artur M.
    Ramkumar, M. V.
    Prasad, Neeli R.
    2009 1ST INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATION, VEHICULAR TECHNOLOGY, INFORMATION THEORY AND AEROSPACE & ELECTRONIC SYSTEMS TECHNOLOGY, VOLS 1 AND 2, 2009, : 182 - 186
  • [9] The distributed conference key management scheme towards next generation conference system
    Xu, Yanyan
    Xu, Zhengquan
    Li, Maoquan
    Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2009, 37 (06): : 71 - 73
  • [10] Rucio - The next generation of large scale distributed system for ATLAS Data Management
    Garonne, V.
    Vigne, R.
    Stewart, G.
    Barisits, M.
    Beermann, T.
    Lassnig, M.
    Serfon, C.
    Goossens, L.
    Nairz, A.
    20TH INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS (CHEP2013), PARTS 1-6, 2014, 513