Land-Use/Land-Cover Classification Using Elephant Herding Algorithm

被引:9
|
作者
Jayanth, J. [1 ]
Shalini, V. S. [2 ]
Kumar, T. Ashok [3 ]
Koliwad, Shivaprakash [4 ]
机构
[1] GSSS Inst Engn & Technol Women, Dept Elect & Commun Engn, Mysore 570016, Karnataka, India
[2] ATME Coll Engn, Dept Elect & Commun Engn, Mysore 570028, Karnataka, India
[3] SDM Inst Technol, Ujire 574240, Belthangady, India
[4] Malnad Coll Engn, Dept Elect & Commun Engn, Hassan 573202, Karnataka, India
关键词
Support vector machine (SVM); Elephant herding (EH); Multispectral (MS) image classification;
D O I
10.1007/s12524-018-00935-x
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In recent years, swarm intelligence algorithms such as particle swarm optimisation, ant colony optimisation, cuckoo search and artificial bee colony algorithm have shown promising results in multispectral image classification. Elephant herding algorithm is one of the newly emerging nature inspired algorithms which can analyse multispectral pixels and determine the information of class via fitness function. When the spectral resolution of the satellite imagery is increased, the higher within-class variability reduces the statistical separability between the LU/LC classes in spectral space and tends to continue diminishing classification accuracy of the traditional classifiers. These are mostly per pixel and parametric in nature. Experimental result has revealed that elephant herding algorithm shows an improvement of 10.7% on Arsikere taluk and 6.63% on NITK campus over support vector machine.
引用
收藏
页码:223 / 232
页数:10
相关论文
共 50 条
  • [1] Land-Use/Land-Cover Classification Using Elephant Herding Algorithm
    J. Jayanth
    V. S. Shalini
    T. Ashok Kumar
    Shivaprakash Koliwad
    [J]. Journal of the Indian Society of Remote Sensing, 2019, 47 : 223 - 232
  • [2] Land-Use and Land-Cover Mapping Using a Gradable Classification Method
    Kitada, Keigo
    Fukuyama, Kaoru
    [J]. REMOTE SENSING, 2012, 4 (06) : 1544 - 1558
  • [3] Quantifying uncertainty in land-use land-cover classification using conformal statistics
    Valle, Denis
    Izbicki, Rafael
    Leite, Rodrigo Vieira
    [J]. REMOTE SENSING OF ENVIRONMENT, 2023, 295
  • [4] Dem Local Accuracy Patterns in Land-Use/Land-Cover Classification
    Katerji, Wassim
    Abadia, Mercedes Farjas
    Balsera, Maria del Carmen Morillo
    [J]. OPEN GEOSCIENCES, 2016, 8 (01): : 760 - 770
  • [5] From land-use/land-cover to land system science
    Turner, B. L., II
    Lambin, Eric F.
    Verburg, Peter H.
    [J]. AMBIO, 2021, 50 (07) : 1291 - 1294
  • [6] Landscape approach for land-use/land-cover classification and mapping at different scales
    Milanova, E
    Alexeev, B
    Sennikova, M
    Kalutskova, N
    Solntsev, V
    [J]. Understanding Land-Use and Land-Cover Change in Global and Regional Context, 2005, : 233 - 247
  • [7] Application of spectral mixture analysis to Amazonian land-use and land-cover classification
    Lu, D
    Batistella, M
    Moran, E
    Mausel, P
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2004, 25 (23) : 5345 - 5358
  • [8] Using an Ecoregion Framework to Analyze Land-Cover and Land-Use Dynamics
    Alisa L. Gallant
    Thomas R. Loveland
    Terry L. Sohl
    Darrell E. Napton
    [J]. Environmental Management, 2004, 34 : S89 - S110
  • [9] Using an ecoregion framework to analyze land-cover and land-use dynamics
    Gallant, AL
    Loveland, TR
    Sohl, TL
    Napton, DE
    [J]. ENVIRONMENTAL MANAGEMENT, 2004, 34 (Suppl 1) : S89 - S110
  • [10] Globalization of studies on land-use and land-cover change
    Himiyama, Y
    [J]. UNDERSTANDING LAND-USE AND LAND-COVER CHANGE IN GLOBAL AND REGIONAL CONTEXT, 2005, : 3 - 22