On comparing the cohomology of algebraic groups, finite Chevalley groups and Frobenius kernels

被引:15
|
作者
Bendel, CP
Nakano, DK
Pillen, C
机构
[1] Utah State Univ, Dept Math & Stat, Logan, UT 84322 USA
[2] Univ Wisconsin, Dept Math Stat & Comp Sci, Menomonie, WI 54751 USA
[3] Univ S Alabama, Dept Math & Stat, Mobile, AL 36688 USA
关键词
D O I
10.1016/S0022-4049(01)00024-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a semisimple simply connected algebraic group defined and split over the field F-p with p elements, G(F-q) be the finite Chevalley group consisting of the F-q-rational points of G where q = p(r), and G(r) be the rth Frobenius kernel of G. This paper investigates relationships between the extension theories of G, G(F-q), and G(r) over the algebraic closure of F-p. First, some qualitative results relating extensions over G(F-q) and G(r) are presented. Then certain extensions over G(F-q) and G(r) are explicitly identified in terms of extensions over G. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:119 / 146
页数:28
相关论文
共 50 条
  • [1] Second cohomology groups for algebraic groups and their Frobenius kernels
    Wright, Caroline B.
    [J]. JOURNAL OF ALGEBRA, 2011, 330 (01) : 60 - 75
  • [2] On projective modules for Frobenius kernels and finite Chevalley groups
    Drupieski, Christopher M.
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2013, 45 : 715 - 720
  • [3] Projective modules for Frobenius kernels and finite Chevalley groups
    Lin, Zongzhu
    Nakano, Daniel K.
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2007, 39 : 1019 - 1028
  • [4] Bounding Cohomology for Finite Groups and Frobenius Kernels
    Christopher P. Bendel
    Daniel K. Nakano
    Brian J. Parshall
    Cornelius Pillen
    Leonard L. Scott
    David Stewart
    [J]. Algebras and Representation Theory, 2015, 18 : 739 - 760
  • [5] Bounding Cohomology for Finite Groups and Frobenius Kernels
    Bendel, Christopher P.
    Nakano, Daniel K.
    Parshall, Brian J.
    Pillen, Cornelius
    Scott, Leonard L.
    Stewart, David
    [J]. ALGEBRAS AND REPRESENTATION THEORY, 2015, 18 (03) : 739 - 760
  • [6] On the cohomology of the finite Chevalley groups
    Hoffman, C
    [J]. JOURNAL OF ALGEBRA, 2000, 226 (02) : 649 - 689
  • [7] GENERIC CARTAN INVARIANTS FOR FROBENIUS KERNELS AND CHEVALLEY-GROUPS
    HUMPHREYS, JE
    [J]. JOURNAL OF ALGEBRA, 1989, 122 (02) : 345 - 352
  • [8] Second cohomology groups for Frobenius kernels and related structures
    Bendel, Christopher P.
    Nakano, Daniel K.
    Pillen, Cornelius
    [J]. ADVANCES IN MATHEMATICS, 2007, 209 (01) : 162 - 197
  • [9] Toda lattice, cohomology of compact Lie groups and finite Chevalley groups
    Luis Casian
    Yuji Kodama
    [J]. Inventiones mathematicae, 2006, 165
  • [10] Toda lattice, cohomology of compact Lie groups and finite Chevalley groups
    Casian, Luis
    Kodama, Yuji
    [J]. INVENTIONES MATHEMATICAE, 2006, 165 (01) : 163 - 208