Solving Multiobjective Optimization Problems in Unknown Dynamic Environments: An Inverse Modeling Approach

被引:75
|
作者
Gee, Sen Bong [1 ]
Tan, Kay Chen [1 ]
Alippi, Cesare [2 ,3 ]
机构
[1] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117576, Singapore
[2] Politecn Milan, Dipartimento Elettron Informaz & Bioingn, I-20133 Milan, Italy
[3] Univ Svizzera Italiana, CH-6900 Lugano, Switzerland
关键词
Change detection; decomposition; dynamic multiobjective optimization; evolutionary computation; EVOLUTIONARY ALGORITHM; GENETIC ALGORITHM;
D O I
10.1109/TCYB.2016.2602561
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Evolutionary multiobjective optimization in dynamic environments is a challenging task, as it requires the optimization algorithm converging to a time-variant Pareto optimal front. This paper proposes a dynamic multiobjective optimization algorithm which utilizes an inverse model set to guide the search toward promising decision regions. In order to reduce the number of fitness evalutions for change detection purpose, a two-stage change detection test is proposed which uses the inverse model set to check potential changes in the objective function landscape. Both static and dynamic multiobjective benchmark optimization problems have been considered to evaluate the performance of the proposed algorithm. Experimental results show that the improvement in optimization performance is achievable when the proposed inverse model set is adopted.
引用
收藏
页码:4223 / 4234
页数:12
相关论文
共 50 条
  • [1] FastPGA: A dynamic population sizing approach for solving expensive multiobjective optimization problems
    Eskandari, Hamidreza
    Geiger, Christopher D.
    Lamont, Gary B.
    EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, PROCEEDINGS, 2007, 4403 : 141 - +
  • [2] Solving Multimodal Optimization Problems through a Multiobjective Optimization Approach
    Ji, Jing-Yu
    Yu, Wei-Jie
    Chen, Wei-Neng
    Zhan, Zhi-Hui
    Zhang, Jun
    2017 SEVENTH INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND TECHNOLOGY (ICIST2017), 2017, : 458 - 463
  • [3] Inverse Gaussian Process Modeling for Evolutionary Dynamic Multiobjective Optimization
    Zhang, Huan
    Ding, Jinliang
    Jiang, Min
    Tan, Kay Chen
    Chai, Tianyou
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (10) : 11240 - 11253
  • [4] Solving multiobjective optimization problems with decision uncertainty: an interactive approach
    Zhou-Kangas Y.
    Miettinen K.
    Sindhya K.
    Journal of Business Economics, 2019, 89 (1) : 25 - 51
  • [5] Multiobjective optimization for dynamic environments
    Bui, LT
    Branke, J
    Abbass, HA
    2005 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-3, PROCEEDINGS, 2005, : 2349 - 2356
  • [6] Multidirectional Prediction Approach for Dynamic Multiobjective Optimization Problems
    Rong, Miao
    Gong, Dunwei
    Zhang, Yong
    Jin, Yaochu
    Pedrycz, Witold
    IEEE TRANSACTIONS ON CYBERNETICS, 2019, 49 (09) : 3362 - 3374
  • [7] Enhanced Simulation-Optimization Approach Using Surrogate Modeling for Solving Inverse Problems
    Mirghani, Baha Y.
    Zechman, Emily M.
    Ranjithan, Ranji S.
    Mahinthakumar, G.
    ENVIRONMENTAL FORENSICS, 2012, 13 (04) : 348 - 363
  • [8] A Stigmergic Approach to Solving Dynamic Optimization Problems
    Korosec, Peter
    Silc, Jurij
    ELEKTROTEHNISKI VESTNIK-ELECTROCHEMICAL REVIEW, 2010, 77 (01): : 19 - 24
  • [9] A monotonic optimization approach for solving strictly quasiconvex multiobjective programming problems
    Tran Ngoc Thang
    Solanki, Vijender Kumar
    Dao, Tuan Anh
    Nguyen Thi Ngoc Anh
    Pham Van Hai
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 38 (05) : 6053 - 6063
  • [10] New Approach to Solving Fuzzy Multiobjective Linear Fractional Optimization Problems
    Sama, Jean De La Croix
    Traore, Doubassi Parfait
    Some, Kounhinir
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2024, 22