Information Reuse Attention in Convolutional Neural Networks for Facial Expression Recognition in the Wild

被引:0
|
作者
Wang, Chuang [1 ]
Hu, Ruimin [1 ]
机构
[1] Wuhan Univ, Dept Natl Engn Res Ctr Multimedia Software, Wuhan, Peoples R China
关键词
facial expression recognition; attention mechanism; information reuse;
D O I
10.1109/IJCNN52387.2021.9534217
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Unlike the constraint frontal face condition, faces in the wild have various unconstrained interference factors, such as pose variations, illumination variations and occlusion. Because of this, facial expressions recognition (FER) in the wild is a challenging task and existing methods fail to performant well. However, for occluded faces (containing occlusion caused by other objects and self-occlusion caused by head posture changes), the attention mechanism has the ability to focus on the non-occluded regions automatically. In this paper, we propose an Information Reuse Attention Module (IRAM) for Convolutional Neural Network (CNN) to extract attention-aware features from faces. Our module reduces decay information in the process of generating attention maps by reusing the information of the previous layer and not reducing the dimensionality. Sequentially, we adaptively refine the feature responses by fusing the attention maps with the feature map. The proposed method is evaluated with two in-the-wild facial expression datasets RAF-DB and FER2013 and also compared with other state-of-the-art methods.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Facial Expression Recognition with Convolutional Neural Networks
    Singh, Shekhar
    Nasoz, Fatma
    [J]. 2020 10TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE (CCWC), 2020, : 324 - 328
  • [2] Probabilistic Attribute Tree Structured Convolutional Neural Networks for Facial Expression Recognition in the Wild
    Cai, Jie
    Meng, Zibo
    Khan, Ahmed Shehab
    Li, Zhiyuan
    O'Reilly, James
    Tong, Yan
    [J]. IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2023, 14 (03) : 1927 - 1941
  • [3] Convolutional Neural Networks Models for Facial Expression Recognition
    Ramdhani, Burhanudin
    Djamal, Esmeralda C.
    Ilyas, Ridwan
    [J]. 2018 INTERNATIONAL SYMPOSIUM ON ADVANCED INTELLIGENT INFORMATICS (SAIN), 2018, : 96 - 101
  • [4] Mobile Convolutional Neural Networks for Facial Expression Recognition
    Yoon, ChangRak
    Kim, DoHyun
    [J]. 11TH INTERNATIONAL CONFERENCE ON ICT CONVERGENCE: DATA, NETWORK, AND AI IN THE AGE OF UNTACT (ICTC 2020), 2020, : 1315 - 1317
  • [5] Deep Convolutional Neural Networks for Facial Expression Recognition
    Ucar, Aysegul
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON INNOVATIONS IN INTELLIGENT SYSTEMS AND APPLICATIONS (INISTA), 2017, : 371 - 375
  • [6] Convolutional Neural Networks Architectures for Facial Expression Recognition
    Porusniuc, George-Cosmin
    Leon, Florin
    Timofte, Radu
    Miron, Casian
    [J]. 2019 E-HEALTH AND BIOENGINEERING CONFERENCE (EHB), 2019,
  • [7] Facial Expression Recognition In The Wild Using Bidirectional Convolutional Neural Network
    Liu, Jiaxu
    [J]. 3RD INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE IN INFORMATION AND COMMUNICATION (IEEE ICAIIC 2021), 2021, : 26 - 30
  • [8] Three convolutional neural network models for facial expression recognition in the wild
    Shao, Jie
    Qian, Yongsheng
    [J]. NEUROCOMPUTING, 2019, 355 : 82 - 92
  • [9] Lightweight Deep Convolutional Neural Networks for Facial Expression Recognition
    Wang, Yanan
    Wu, Jianming
    Hoashi, Keiichiro
    [J]. 2019 IEEE 21ST INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING (MMSP 2019), 2019,
  • [10] Facial Expression Recognition Using Deep Convolutional Neural Networks
    Dinh Viet Sang
    Nguyen Van Dat
    Do Phan Thuan
    [J]. 2017 9TH INTERNATIONAL CONFERENCE ON KNOWLEDGE AND SYSTEMS ENGINEERING (KSE 2017), 2017, : 130 - 135