Temporal Interval Regression Network for Video Action Detection

被引:0
|
作者
Wang, Qing [1 ,2 ]
Qing, Laiyun [1 ,2 ]
Miao, Jun [3 ]
Duan, Lijuan [4 ]
机构
[1] Univ Chinese Acad Sci, Sch Comp & Control Engn, Beijing 101400, Peoples R China
[2] Chinese Acad Sci, Key Lab Intelligent Informat Proc, Inst Comp Technol, Beijing 100190, Peoples R China
[3] Beijing Informat Sci & Technol Univ, Beijing Key Lab Internet Culture & Digital Dissem, Sch Comp Sci, Beijing 100101, Peoples R China
[4] Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
基金
北京市自然科学基金;
关键词
Action detection; Temporal interval regression; 3D ConvNets; Multi-task loss;
D O I
10.1007/978-3-319-77380-3_25
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Temporal action detection in untrimmed video is an important and challenging task in computer vision. In this paper, a straightforward and efficient regression model is proposed by us to detect action instance and refine action interval in long untrimmed videos. We train a single 3D Convolutional Networks (3D ConvNets) jointly with two sibling output layers: a classification layer to predict the class label and a temporal interval regression layer to modify the temporal localization of input proposal. We also introduce an effective method to sample negative and positive proposals which are discriminative to feature extractor and classifier during training. On THUMOS 2014 dataset, our method achieves competitive performance compared with recent state-of-the-art methods.
引用
收藏
页码:258 / 268
页数:11
相关论文
共 50 条
  • [1] TORNADO: A Spatio-Temporal Convolutional Regression Network for Video Action Proposal
    Zhu, Hongyuan
    Vial, Romain
    Lu, Shijian
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 5814 - 5822
  • [2] SPATIO-TEMPORAL MOTION AGGREGATION NETWORK FOR VIDEO ACTION DETECTION
    Zhang, Hongcheng
    Zhao, Xu
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 2180 - 2184
  • [3] REGRESSION BEFORE CLASSIFICATION FOR TEMPORAL ACTION DETECTION
    Jin, Cece
    Zhang, Tao
    Kong, Weijie
    Li, Thomas
    Li, Ge
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 2318 - 2322
  • [4] TURN TAP: Temporal Unit Regression Network for Temporal Action Proposals
    Gao, Jiyang
    Yang, Zhenheng
    Sun, Chen
    Chen, Kan
    Nevatia, Ram
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 3648 - 3656
  • [5] ATROUS TEMPORAL CONVOLUTIONAL NETWORK FOR VIDEO ACTION SEGMENTATION
    Wang, Jiahao
    Du, Zhengyin
    Li, Annan
    Wang, Yunhong
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 1585 - 1589
  • [6] Exploiting relation of video segments for temporal action detection
    Wang, Houlin
    You, Dianlong
    Zhang, Shihui
    [J]. ADVANCED ENGINEERING INFORMATICS, 2024, 62
  • [7] YOWOv3: A Lightweight Spatio-Temporal Joint Network for Video Action Detection
    Zhu A.
    Wang Y.
    Yang J.
    Yan T.
    Ma H.
    Li W.
    [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34 (09) : 1 - 1
  • [8] Algorithm for Video Temporal Action Proposal Combining Watershed and Regression Networks
    Huang Yunwen
    Wang Fei
    Li Jinghong
    Wang Guorui
    [J]. CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2019, 46 (11):
  • [9] Algorithm for Video Temporal Action Proposal Combining Watershed and Regression Networks
    Huang Y.
    Wang F.
    Li J.
    Wang G.
    [J]. Zhongguo Jiguang/Chinese Journal of Lasers, 2019, 46 (11):
  • [10] A Malleable Boundary Network for temporal action detection?
    Wang, Tian
    Hou, Boyao
    Li, Zexian
    Li, Zhe
    Huang, Lei
    Zhang, Baochang
    Snoussi, Hichem
    [J]. COMPUTERS & ELECTRICAL ENGINEERING, 2022, 103