THE SIERPINSKI TRIANGLE PLANE

被引:3
|
作者
Ettestad, David [1 ]
Carbonara, Joaquin [2 ]
机构
[1] SUNY Buffalo State, Dept Phys, 1300 Elmwood Ave, Buffalo, NY 14222 USA
[2] SUNY Buffalo State, Dept Math, 1300 Elmwood Ave, Buffalo, NY 14222 USA
关键词
Fractals; Fractal Geometry; Sierpinski Triangle; HAUSDORFF MEASURE; GASKET;
D O I
10.1142/S0218348X18500032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Sierpinski Triangle (ST) is a fractal which has Haussdorf dimension log(2) 3 approximate to 1.585 that has been studied extensively. In this paper, we introduce the Sierpinski Triangle Plane (STP), an infinite extension of the ST that spans the entire real plane but is not a vector subspace or a tiling of the plane with a finite set of STs. STP is shown to be a radial fractal with many interesting and surprising properties.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] States on the Sierpinski triangle
    Kimball, JC
    [J]. FOUNDATIONS OF PHYSICS, 1998, 28 (01) : 87 - 105
  • [2] States on the Sierpinski Triangle
    J. C. Kimball
    [J]. Foundations of Physics, 1998, 28 : 87 - 105
  • [3] THE PALETTE INDEX OF SIERPINSKI TRIANGLE GRAPHS AND SIERPINSKI GRAPHS
    Ghazaryan, A.
    [J]. PRIKLADNAYA DISKRETNAYA MATEMATIKA, 2021, (54): : 99 - 108
  • [4] A topological characterization of the Sierpinski triangle
    Vejnar, Benjamin
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2012, 159 (05) : 1404 - 1408
  • [5] Properties of Sierpinski Triangle Graphs
    Bickle, Allan
    [J]. COMBINATORICS, GRAPH THEORY AND COMPUTING, SEICCGTC 2021, 2024, 448 : 295 - 303
  • [6] Analysis of an irregular Sierpinski triangle
    Palagallo, J
    Palmer, M
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2004, 12 (01) : 137 - 144
  • [7] DISTINGUISHING BETWEEN SIERPINSKI TRIANGLE CONSTRUCTIONS
    Ettestad, David
    Carbonara, Joaquin
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2019, 27 (05)
  • [8] Code properties of the holographic Sierpinski triangle
    Bao, Ning
    Naskar, Joydeep
    [J]. PHYSICAL REVIEW D, 2022, 106 (12)
  • [9] ESTIMATE OF THE HAUSDORFF MEASURE OF THE SIERPINSKI TRIANGLE
    Mora, Peter
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2009, 17 (02) : 137 - 148
  • [10] Assembling molecular Sierpinski triangle fractals
    Shang, Jian
    Wang, Yongfeng
    Chen, Min
    Dai, Jingxin
    Zhou, Xiong
    Kuttner, Julian
    Hilt, Gerhard
    Shao, Xiang
    Gottfried, J. Michael
    Wu, Kai
    [J]. NATURE CHEMISTRY, 2015, 7 (05) : 389 - 393