Min-Max MPC based on a network problem

被引:6
|
作者
Alamo, T. [1 ]
de la Pena, D. Munoz [1 ]
Camacho, E. R. [1 ]
机构
[1] Univ Seville, Dept Ingn Sistemas & Automat, Escuela Super Ingenieros, Seville 41092, Spain
关键词
predictive control; robust control; uncertain linear systems; networks; quadratic programming;
D O I
10.1016/j.sysconle.2007.08.013
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In general, min-max model predictive controllers have a high computational burden. In this work, an efficient implementation of this class of controllers that can be applied to linear plants with additive uncertainties and quadratic cost functions is presented. The new approach relies on the equivalence of the maximization problem with a network problem. If a given condition is satisfied, the computational burden of the proposed implementation grows polynomially with the prediction horizon. In particular, the resulting optimization problem can be posed as a quadratic program-ming problem with a number of constraints and variables that grows in a quadratic manner with the prediction horizon. An alternative controller has been proposed for those systems that do not satisfy this condition. This alternative controller approximates the original one with a given bound on the error. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:184 / 192
页数:9
相关论文
共 50 条
  • [1] Min-max MPC using a tractable QP problem
    Alamo, T.
    Ramirez, D. R.
    de la Pena, D. Munoz
    Camacho, E. F.
    AUTOMATICA, 2007, 43 (04) : 693 - 700
  • [2] Min-max MPC using a tractable QP problem
    Alamo, T.
    Ramirez, D. R.
    Munoz de la Pena, D.
    2005 44th IEEE Conference on Decision and Control & European Control Conference, Vols 1-8, 2005, : 6210 - 6215
  • [3] Handling the Constraints in Min-Max MPC
    Hu, Jianchen
    Lv, Xiaoliang
    Pan, Hongguang
    Zhang, Meng
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2024, 21 (01) : 296 - 304
  • [4] Min-max model for the network reduction problem
    Pesko, Stefan
    MATHEMATICAL METHODS IN ECONOMICS 2013, PTS I AND II, 2013, : 718 - 723
  • [5] Computational burden reduction in min-max MPC
    Ramirez, D. R.
    Alamo, T.
    Camacho, E. F.
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2011, 348 (09): : 2430 - 2447
  • [6] Min max MPC based on a graph problem
    Alamo, T
    de la Peña, DM
    Camacho, EF
    42ND IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-6, PROCEEDINGS, 2003, : 917 - 922
  • [7] Min-max and min-max (relative) regret approaches to representatives selection problem
    Dolgui, Alexandre
    Kovalev, Sergey
    4OR-A QUARTERLY JOURNAL OF OPERATIONS RESEARCH, 2012, 10 (02): : 181 - 192
  • [8] Min-max Differential Inequalities for Polytopic Tube MPC
    Feng, Xuhui
    Hu, Haimin
    Villanueva, Mario E.
    Houska, Boris
    2019 AMERICAN CONTROL CONFERENCE (ACC), 2019, : 1170 - 1174
  • [9] Robust MPC via min-max differential inequalities
    Villanueva, Mario E.
    Quirynen, Rien
    Diehl, Moritz
    Chachuat, Benoit
    Houska, Boris
    AUTOMATICA, 2017, 77 : 311 - 321
  • [10] MIN-MAX APPROACH TO A MULTICRITERION NETWORK OPTIMIZATION PROBLEM.
    Osyczka, Angrzej
    Welding in the World, Le Soudage Dans Le Monde, 1979, : 316 - 320