Gap probability for products of random matrices in the critical regime

被引:1
|
作者
Berezin, Sergey [1 ,2 ]
Strahov, Eugene [1 ]
机构
[1] Hebrew Univ Jerusalem, Dept Math, IL-91904 Jerusalem, Israel
[2] VA Steklov Math Inst RAS, 27 Fontanka, St Petersburg 191023, Russia
关键词
Products of random matrices; Gap probabilities; Riemann-Hilbert problems; Determinantal point processes; Singular value statistics; LEVEL-SPACING DISTRIBUTIONS; TAU-FUNCTION THEORY; FREDHOLM DETERMINANTS; PAINLEVE EQUATIONS; SINGULAR-VALUES; HARD EDGE; ASYMPTOTICS; UNIVERSALITY;
D O I
10.1016/j.jat.2021.105687
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The singular values of a product of M independent Ginibre matrices of size N x N form a determinantal point process. Near the soft edge, as both M and N go to infinity in such a way that M/N -> alpha, alpha > 0, a scaling limit emerges. We consider a gap probability for the corresponding limiting determinantal process, namely, the probability that there are no particles in the interval (a, +infinity). We derive a Tracy-Widom-like formula in terms of the unique solution of a certain matrix Riemann- Hilbert problem of size 2 x 2. The right-tail asymptotics for this solution is obtained by the Deift-Zhou non-linear steepest descent analysis. (c) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:29
相关论文
共 50 条
  • [1] APPROXIMATION OF PROBABILITY MEASURES IN VARIATION AND PRODUCTS OF RANDOM MATRICES
    TUTUBALIN, VN
    THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1968, 13 (01): : 65 - +
  • [2] Consensus and Products of Random Stochastic Matrices: Exact Rate for Convergence in Probability
    Bajovic, Dragana
    Xavier, Joao
    Moura, Jose M. F.
    Sinopoli, Bruno
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (10) : 2557 - 2571
  • [3] Random matrices: Probability of normality
    Deneanu, Andrei
    Vu, Van
    ADVANCES IN MATHEMATICS, 2019, 346 : 887 - 907
  • [4] Free probability and random matrices
    Guionnet, A.
    MODERN ASPECTS OF RANDOM MATRIX THEORY, 2014, 72 : 35 - 51
  • [5] Free probability and random matrices
    Speicher, Roland
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL III, 2014, : 477 - 501
  • [6] PRODUCTS OF RANDOM MATRICES
    FURSTENBERG, H
    KESTEN, H
    ANNALS OF MATHEMATICAL STATISTICS, 1960, 31 (02): : 457 - 469
  • [7] Products of random matrices
    Jackson, AD
    Lautrup, B
    Johansen, P
    Nielsen, M
    PHYSICAL REVIEW E, 2002, 66 (06): : 5
  • [8] PRODUCTS OF RANDOM MATRICES
    GUIVARCH, Y
    JOURNAL OF STATISTICAL PHYSICS, 1984, 36 (1-2) : 279 - 279
  • [9] On Products of Random Matrices
    Amburg, Natalia
    Orlov, Aleksander
    Vasiliev, Dmitry
    ENTROPY, 2020, 22 (09)
  • [10] ON PRODUCTS OF RANDOM MATRICES
    TUTUBALI.VN
    THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1965, 10 (02): : 370 - &