Convergence to periodic solutions in autonomous reaction-diffusion systems in one space dimension

被引:2
|
作者
Büger, M [1 ]
机构
[1] Univ Giessen, D-35392 Giessen, Germany
关键词
D O I
10.1006/jdeq.2000.3865
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the autonomous reaction-diffusion system (d)/(dt) ((u)(v)) = lambda Delta((u)(v)) + f((u)(v)) + ((-v)(u)), t > 0, 0 < x < 1, with Dirichlet boundary conditions where f is an element of C-1{R-2, R) and lambda is positive. We show a Poincare-Bendixson theorem, which means that all solutions converge either to zero or to a periodic orbit. Furthermore, we determine stability properties of the periodic orbits. (C) 2001 Academic Press.
引用
收藏
页码:227 / 256
页数:30
相关论文
共 50 条