Existence conditions in general quasimonotone variational inequalities

被引:11
|
作者
Aussel, D [1 ]
Luc, DT
机构
[1] Univ Perpignan, F-66025 Perpignan, France
[2] Univ Avigon, Lab Anal Lineaire & Geomet, Avignon, France
关键词
D O I
10.1017/S0004972700038259
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study a general variational inequality model with set-valued quasi-monotone operators, a model which includes several variational inequalities and equilibrium problems. We establish unifying conditions for existence of solutions in a topological vector space setting. Applications to parametric equilibrium models and to a contact problem are given.
引用
收藏
页码:285 / 303
页数:19
相关论文
共 50 条
  • [1] On Quasimonotone Variational Inequalities
    I. V. Konnov
    [J]. Journal of Optimization Theory and Applications, 1998, 99 : 165 - 181
  • [2] On quasimonotone variational inequalities
    Aussel, D
    Hadjisavvas, N
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2004, 121 (02) : 445 - 450
  • [3] On quasimonotone variational inequalities
    Konnov, IV
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1998, 99 (01) : 165 - 181
  • [4] On Quasimonotone Variational Inequalities
    D. Aussel
    N. Hadjisavvas
    [J]. Journal of Optimization Theory and Applications, 2004, 121 : 445 - 450
  • [5] Quasimonotone variational inequalities in Banach spaces
    Hadjisavvas, N
    Schaible, S
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1996, 90 (01) : 95 - 111
  • [6] Minimal Coercivity Conditions and Exceptional Families of Elements in Quasimonotone Variational Inequalities
    M. Bianchi
    N. Hadjisavvas
    S. Schaible
    [J]. Journal of Optimization Theory and Applications, 2004, 122 : 1 - 17
  • [7] Minimal coercivity conditions and exceptional families of elements in quasimonotone variational inequalities
    Bianchi, M
    Hadjisavvas, N
    Schaible, S
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2004, 122 (01) : 1 - 17
  • [8] Quasimonotone Variational Inequalities in Banach Spaces
    Department of Mathematics, University of the Aegean, Karlovassi, Samos, Greece
    不详
    [J]. J. Optim. Theory Appl., 1 (95-111):
  • [9] Existence theorems for relaxed η-α pseudomonotone and strictly η-quasimonotone generalized variational-like inequalities
    Areerat Arunchai
    Somyot Plubtieng
    Ching-Feng Wen
    [J]. Journal of Inequalities and Applications, 2014
  • [10] On quasimonotone Stampacchia variational inequalities on Hadamard manifolds
    Amini-Harandi, A.
    Fakhar, M.
    Nasiri, L.
    [J]. OPTIMIZATION, 2022, 71 (12) : 3695 - 3708