Limit cycles of piecewise polynomial perturbations of higher dimensional linear differential systems

被引:3
|
作者
Llibre, Jaume [1 ]
Novaes, Douglas D. [2 ]
Zeli, Iris O. [3 ]
机构
[1] Univ Autonoma Barcelona UAB, Dept Matemat, Barcelona 08193, Catalonia, Spain
[2] Univ Estadual Campinas, Dept Matemat, Rua Sergio Buarque de Holanda 651, BR-13083859 Campinas, SP, Brazil
[3] Inst Tecnol Aeronaut ITA, Dept Matemat, Praca Marechal Eduardo Gomes 50, BR-12228900 Sao Jose Dos Campos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Limit cycle; averaging method; periodic orbit; polynomial differential system; nonsmooth polynomial differential systems; nonsmooth dynamical system; Filippov system; PERIODIC-SOLUTIONS; AVERAGING THEORY; BIFURCATIONS; PERSISTENCE; EQUATIONS;
D O I
10.4171/RMI/1131
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The averaging theory has been extensively employed for studying periodic solutions of smooth and nonsmooth differential systems. Here, we extend the averaging theory for studying periodic solutions a class of regularly perturbed non-autonomous n-dimensional discontinuous piecewise smooth differential system. As a fundamental hypothesis, it is assumed that the unperturbed system has a manifold Z subset of R-n of periodic solutions satisfying dim(Z) < n. Then, we apply this result to study limit cycles bifurcating from periodic solutions of linear differential systems, x' = Mx, when they are perturbed inside a class of discontinuous piecewise polynomial differential systems with two zones. More precisely, we study the periodic solutions of the following differential system: x' = Mx + epsilon F-1(n)(x) + epsilon F-2(2)n(x) in Rd+2, where e is a small parameter, M is a (d+2) x(d+2) matrix having one pair of pure imaginary conjugate eigenvalues, m zeros eigenvalues, and d - m non-zero real eigenvalues.
引用
下载
收藏
页码:291 / 318
页数:28
相关论文
共 50 条
  • [1] Limit cycles via higher order perturbations for some piecewise differential systems
    Buzzi, Claudio A.
    Silva Lima, Mauricio Firmino
    Torregrosa, Joan
    PHYSICA D-NONLINEAR PHENOMENA, 2018, 371 : 28 - 47
  • [2] LIMIT CYCLES FOR PIECEWISE SMOOTH PERTURBATIONS OF A CUBIC POLYNOMIAL DIFFERENTIAL CENTER
    Li, Shimin
    Huang, Tiren
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2015,
  • [3] LIMIT CYCLES OF DISCONTINUOUS PIECEWISE QUADRATIC AND CUBIC POLYNOMIAL PERTURBATIONS OF A LINEAR CENTER
    Llibre, Jaume
    Tang, Yilei
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (04): : 1769 - 1784
  • [4] LIMIT CYCLES OF DISCONTINUOUS PIECEWISE LINEAR DIFFERENTIAL SYSTEMS
    Cardin, Pedro Toniol
    De Carvalho, Tiago
    Llibre, Jaume
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2011, 21 (11): : 3181 - 3194
  • [5] Algebraic Limit Cycles in Piecewise Linear Differential Systems
    Buzzi, Claudio A.
    Gasull, Armengol
    Torregrosa, Joan
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2018, 28 (03):
  • [6] Limit cycles in piecewise smooth perturbations of a class of cubic differential systems
    Sun, Dan
    Gao, Yunfei
    Peng, Linping
    Fu, Li
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2023, (49) : 1 - 26
  • [7] On the limit cycles for a class of discontinuous piecewise cubic polynomial differential systems
    Huang, Bo
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2020, (25) : 1 - 24
  • [8] ON THE LIMIT CYCLES OF A CLASS OF DISCONTINUOUS PIECEWISE LINEAR DIFFERENTIAL SYSTEMS
    Llibre, Jaume
    Menezes, Lucyjane de A. S.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2020, 25 (05): : 1835 - 1858
  • [9] Two Limit Cycles in Lienard Piecewise Linear Differential Systems
    Llibre, Jaume
    Ponce, Enrique
    Valls, Claudia
    JOURNAL OF NONLINEAR SCIENCE, 2019, 29 (04) : 1499 - 1522
  • [10] Limit cycles of 3-dimensional discontinuous piecewise differential systems formed by linear centers
    Jaume LLibre
    Jaime R. de Moraes
    São Paulo Journal of Mathematical Sciences, 2021, 15 : 858 - 874