Initial-boundary value problem for the one dimensional Thirring model

被引:34
|
作者
Naumkin, I. P. [1 ,2 ]
机构
[1] Univ Paris 06, BC 187,4 Pl Jussieu, F-75252 Paris 05, France
[2] CNRS, Lab Jacques Louis Lions, BC 187,4 Pl Jussieu, F-75252 Paris 05, France
关键词
NONLINEAR DIRAC-EQUATION; ONE SPACE DIMENSION; WELL-POSEDNESS; GLOBAL-SOLUTIONS; QUADRATIC NONLINEARITIES; SCHRODINGER-EQUATIONS;
D O I
10.1016/j.jde.2016.07.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the inhomogeneous Dirichlet initial-boundary value problem for the one dimensional Thirring model. We prove the local existence of solutions and global existence of small solutions. Moreover, we obtain a sharp estimate in the uniform norm for the global solutions and we prove the existence of a modified low-energy scattering for this model. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:4486 / 4523
页数:38
相关论文
共 50 条