Partial derivative formulas and identities involving 2-variable Simsek polynomials

被引:0
|
作者
Khan, Subuhi [1 ]
Nahid, Tabinda [1 ]
Riyasat, Mumtaz [1 ]
机构
[1] Aligarh Muslim Univ, Dept Math, Aligarh, Uttar Pradesh, India
来源
关键词
Partial differential equations; Recurrence relations; 2-variable Simsek polynomials;
D O I
10.1007/s40590-019-00236-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The 2-variable Simsek polynomials Yn(x,y & x37e;lambda,delta) are introduced as the generalization of a new family of polynomials Yn(x & x37e;lambda). Certain partial derivatives formulas and identities for the 2-variable Simsek polynomials Yn(x,y & x37e;lambda,delta)are established. A brief view of quasi-monomial approach establishing differential operators and equation is presented for these polynomials.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 50 条
  • [1] Properties and Graphical Representations of the 2-Variable Form of the Simsek Polynomials
    Subuhi Khan
    Tabinda Nahid
    Mumtaz Riyasat
    [J]. Vietnam Journal of Mathematics, 2022, 50 : 95 - 109
  • [2] Properties and Graphical Representations of the 2-Variable Form of the Simsek Polynomials
    Khan, Subuhi
    Nahid, Tabinda
    Riyasat, Mumtaz
    [J]. VIETNAM JOURNAL OF MATHEMATICS, 2022, 50 (01) : 95 - 109
  • [3] ASYMPTOTIC FORMULAS FOR 2-VARIABLE HERMITE-POLYNOMIALS
    DODONOV, VV
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (18): : 6191 - 6203
  • [4] Partial Derivative Equations and Identities for Hermite-Based Peters-Type Simsek Polynomials and Their Applications
    Yuluklu, Eda
    [J]. MATHEMATICS, 2024, 12 (16)
  • [5] INTERPOLATION THEOREM FOR 2-VARIABLE POLYNOMIALS
    EASTWOOD, A
    [J]. MANUSCRIPTA MATHEMATICA, 1990, 67 (03) : 227 - 249
  • [6] ON THE GENERATING FUNCTION OF 2-VARIABLE HERMITES POLYNOMIALS
    LEAUTE, B
    MARCILHACY, G
    MELLITI, T
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1995, 110 (10): : 1237 - 1244
  • [7] A COMPREHENSIVE STUDY OF 2-VARIABLE HURWITZ POLYNOMIALS
    REDDY, HC
    RAJAN, PK
    [J]. IEEE TRANSACTIONS ON EDUCATION, 1989, 32 (03) : 198 - 209
  • [8] On 2-variable q-Hermite polynomials
    Raza, Nusrat
    Fadel, Mohammed
    Nisar, Kottakkaran Sooppy
    Zakarya, M.
    [J]. AIMS MATHEMATICS, 2021, 6 (08): : 8705 - 8727
  • [9] STABILITY-CRITERIA FOR 2-VARIABLE POLYNOMIALS
    SILJAK, DD
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1975, CA22 (03): : 185 - 189
  • [10] On a Family of 2-Variable Orthogonal Krawtchouk Polynomials
    Gruenbaum, F. Alberto
    Rahman, Mizan
    [J]. SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2010, 6