Direct location of the minimum point on intersection seams of potential energy surfaces with equation-of-motion coupled-cluster methods

被引:19
|
作者
Epifanovsky, Evgeny [1 ]
Krylov, Anna I. [1 ]
机构
[1] Univ S Carolina, Dept Chem, Columbia, SC 29208 USA
基金
美国国家科学基金会;
关键词
MECP; conical intersections; equation-of-motion; coupled-cluster; analytic gradients;
D O I
10.1080/00268970701549397
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An implementation of the projected gradient method for locating the minimum energy crossing point between electronic states of different symmetry/multiplicity within the equation-of-motion coupled-cluster family of methods is reported. The method is applied to characterize the intersections between electronic states in N-3(+), NO2, and para-benzyne using the excitation energies, ionization potential, and spin-flip variants of the equation-of-motion coupled-cluster methods. The performance of the algorithm is discussed and recommendations for improving the convergence in problematic situations are given.
引用
收藏
页码:2515 / 2525
页数:11
相关论文
共 50 条
  • [1] Relativistic coupled-cluster and equation-of-motion coupled-cluster methods
    Liu, Junzi
    Cheng, Lan
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2021, 11 (06)
  • [2] Shape of Multireference, Equation-of-Motion Coupled-Cluster, and Density Functional Theory Potential Energy Surfaces at a Conical Intersection
    Gozem, Samer
    Melaccio, Federico
    Valentini, Alessio
    Filatov, Michael
    Huix-Rotllant, Miquel
    Ferre, Nicolas
    Manuel Frutos, Luis
    Angeli, Celestino
    Krylov, Anna I.
    Granovsky, Alexander A.
    Lindh, Roland
    Olivucci, Massimo
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2014, 10 (08) : 3074 - 3084
  • [3] Analytical energy gradients for excited-state coupled-cluster methods: Automated algebraic derivation of first derivatives for equation-of-motion coupled-cluster and similarity transformed equation-of-motion coupled-cluster theories
    Wladyslawski, M
    Nooijen, M
    [J]. ADVANCES IN QUANTUM CHEMISTRY, VOL 49, 2005, 49 : 1 - 101
  • [4] Equation-of-motion coupled-cluster methods for metastable electronic states
    Jagau, Thomas
    Krylov, Anna
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250
  • [5] Higher-order equation-of-motion coupled-cluster methods
    Hirata, S
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2004, 121 (01): : 51 - 59
  • [6] Equation-of-motion relativistic coupled-cluster theory
    Li, Xiaosong
    Williams-Young, David
    Kaulias, Lauren
    DePrince, A.
    Silva, Daniel
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [7] Equation-of-motion coupled-cluster methods for electronic resonances: Challenges and solutions
    Bravaya, Ksenia
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [8] Simplified methods for equation-of-motion coupled-cluster excited state calculations
    Gwaltney, SR
    Nooijen, M
    Bartlett, RJ
    [J]. CHEMICAL PHYSICS LETTERS, 1996, 248 (3-4) : 189 - 198
  • [9] Perturbative corrections to coupled-cluster and equation-of-motion coupled-cluster energies: A determinantal analysis
    Hirata, S
    Nooijen, M
    Grabowski, I
    Bartlett, RJ
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2001, 114 (09): : 3919 - 3928
  • [10] Coupled-cluster theory and its equation-of-motion extensions
    Bartlett, Rodney J.
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2012, 2 (01) : 126 - 138