DATA-DRIVEN LEARNING OF NONAUTONOMOUS SYSTEMS

被引:25
|
作者
Qin, Tong [1 ]
Chen, Zhen [2 ]
Jakeman, John D. [3 ]
Xiu, Dongbin [1 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[2] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
[3] Sandia Natl Labs, Optimizat & Uncertainty Quantificat Dept, Albuquerque, NM 87123 USA
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2021年 / 43卷 / 03期
关键词
deep neural network; residual network; nonautonomous systems; equation recovery; DYNAMIC-MODE DECOMPOSITION; GOVERNING EQUATIONS; SPARSE IDENTIFICATION; SPECTRAL PROPERTIES;
D O I
10.1137/20M1342859
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a numerical framework for recovering unknown nonautonomous dynamical systems with time-dependent inputs. To circumvent the difficulty presented by the nonautonomous nature of the system, our method transforms the solution state into piecewise integration of the system over a discrete set of time instances. The time-dependent inputs are then locally parameterized by using a proper model, for example, polynomial regression, in the pieces determined by the time instances. This transforms the original system into a piecewise parametric system that is locally time invariant. We then design a deep neural network structure to learn the local models. Once the network model is constructed, it can be iteratively used over time to conduct global system prediction. We provide theoretical analysis of our algorithm and present a number of numerical examples to demonstrate the effectiveness of the method.
引用
收藏
页码:A1607 / A1624
页数:18
相关论文
共 50 条
  • [1] Data-driven models of nonautonomous systems
    Lu, Hannah
    Tartakovsky, Daniel M.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 507
  • [2] Data-Driven Control and Learning Systems
    Hou, Zhongsheng
    Gao, Huijun
    Lewis, Frank L.
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2017, 64 (05) : 4070 - 4075
  • [3] Data-driven reduced-order modeling for nonautonomous dynamical systems in multiscale media
    Li, Mengnan
    Jiang, Lijian
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 474
  • [4] Data-driven Learning Systems and the Commission of International Crimes
    Greipl, Anna Rosalie
    [J]. JOURNAL OF INTERNATIONAL CRIMINAL JUSTICE, 2024, 21 (05) : 1097 - 1118
  • [5] Curriculum learning for data-driven modeling of dynamical systems
    Bucci, Michele Alessandro
    Semeraro, Onofrio
    Allauzen, Alexandre
    Chibbaro, Sergio
    Mathelin, Lionel
    [J]. EUROPEAN PHYSICAL JOURNAL E, 2023, 46 (03):
  • [6] Empowering Learning through Intelligent Data-Driven Systems
    Aldriwish, Khalid Abdullah
    [J]. ENGINEERING TECHNOLOGY & APPLIED SCIENCE RESEARCH, 2024, 14 (01) : 12844 - 12849
  • [7] Data-Driven MPC for Nonlinear Systems with Reinforcement Learning
    Li, Yiran
    Wang, Qian
    Sun, Zhongqi
    Xia, Yuanqing
    [J]. 2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 2404 - 2409
  • [8] A data-driven framework for learning hybrid dynamical systems
    Li, Yang
    Xu, Shengyuan
    Duan, Jinqiao
    Huang, Yong
    Liu, Xianbin
    [J]. CHAOS, 2023, 33 (06)
  • [9] Curriculum learning for data-driven modeling of dynamical systems
    Michele Alessandro Bucci
    Onofrio Semeraro
    Alexandre Allauzen
    Sergio Chibbaro
    Lionel Mathelin
    [J]. The European Physical Journal E, 2023, 46
  • [10] AN APPROACH TO DATA-DRIVEN LEARNING
    MARKOV, Z
    [J]. LECTURE NOTES IN ARTIFICIAL INTELLIGENCE, 1991, 535 : 127 - 140