Synergistic influence of metakaolin and slag cement on the properties of self-compacting fiber-reinforced concrete

被引:3
|
作者
Raia, Amal [1 ]
Tahwia, Ahmed [1 ]
Raheem, Ahmed Hassanin Abdel [1 ]
Elrahman, Mohamed Abd [1 ]
机构
[1] Mansoura Univ, Struct Engn Dept, Mansoura 35516, Egypt
关键词
Self-Compacting Concrete; Mineral Additives; Fresh Properties; Concrete Strength; Water Penetration; Steel Fibers; BLAST-FURNACE SLAG; MECHANICAL-PROPERTIES; COMPRESSIVE STRENGTH; HARDENED PROPERTIES; FLY-ASH; STEEL; PERFORMANCE; FRESH; DURABILITY; HYDRATION;
D O I
10.1007/s41062-021-00657-z
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Self-compacting concrete (SCC) is a category of cement-based materials that need a high amount of binder to achieve the required characteristics. Various fine materials can be used to replace Portland cement (PC) and reduce the carbon footprint associated with cement manufacturing. In this research, the synergistic effect of metakaolin (MK) and ground-granulated blast-furnace slag (GGBS) on the fresh and hardened properties of SCC were investigated. In addition, steel fibers have been incorporated to evaluate their influence on fresh and hardened concrete properties. Several mixtures have been prepared incorporating different dosages of GGBS and MK as replacing materials to PC. Fresh SCC properties have been studied, including filling ability, viscosity, and passing ability. In addition, the hardened characteristics include mechanical properties, variation in compressive strength after high-temperature exposure, water penetration depth, and microstructures were investigated. The experimental results revealed that binary and ternary mixtures can achieve the requirements of SCC but with increasing the superplasticizer dosages. In addition, the incorporation of steel fiber reduces the concrete workability but at the same time has positive influences on the mechanical properties of concrete. Synergistic effect of MK and GGBS improves durability and mechanical properties in both cases: normal conditions and after high-temperature exposure. A combination of 15% GGBS and 10% MK gives better result in fresh and hardened properties.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Synergistic influence of metakaolin and slag cement on the properties of self-compacting fiber-reinforced concrete
    Amal Raia
    Ahmed Tahwia
    Ahmed Hassanin Abdel Raheem
    Mohamed Abd Elrahman
    Innovative Infrastructure Solutions, 2022, 7
  • [2] FIBER-REINFORCED PUMICE AGGREGATE SELF-COMPACTING CONCRETE
    Kaffetzakis, Michael
    Papanicolaou, Catherine
    FIB SYMPOSIUM PRAGUE 2011: CONCRETE ENGINEERING FOR EXCELLENCE AND EFFICIENCY, VOLS 1 AND 2, 2011, : 281 - 284
  • [3] A Review on Hybrid Fiber-Reinforced Self-compacting Concrete: Properties & Challenges
    Hemant B. Dahake
    Bhushan H. Shinde
    Iranian Journal of Science and Technology, Transactions of Civil Engineering, 2025, 49 (1) : 1 - 19
  • [4] Advance Study of Fiber-Reinforced Self-Compacting Concrete
    Mironova, M.
    Ivanova, M.
    Naidenov, V.
    Georgiev, I.
    Stary, J.
    APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES (AMITANS'15), 2015, 1684
  • [5] On the mechanical properties and fracture behavior of polyolefin fiber-reinforced self-compacting concrete
    Alberti, M. G.
    Enfedaque, A.
    Galvez, J. C.
    CONSTRUCTION AND BUILDING MATERIALS, 2014, 55 : 274 - 288
  • [6] Impact resistance of steel fiber-reinforced self-compacting concrete
    Abid, S. R.
    Ali, S. H.
    Goaiz, H. A.
    Al-Gasham, T. S.
    Kadhim, A. L.
    MAGAZINE OF CIVIL ENGINEERING, 2021, 105 (05):
  • [7] Frost resistance of fiber-reinforced self-compacting recycled concrete
    Zheng, Chuanlei
    Li, Shuxiang
    Hou, Yufei
    Jin, Baohong
    REVIEWS ON ADVANCED MATERIALS SCIENCE, 2022, 61 (01) : 711 - 725
  • [8] Mechanical and durability evaluation of fiber-reinforced self-compacting concrete
    Yehia, Sherif
    Douba, AlaEddin
    Abdullahi, Omar
    Farrag, Sharef
    CONSTRUCTION AND BUILDING MATERIALS, 2016, 121 : 120 - 133
  • [9] Lightweight panels of steel fiber-reinforced self-compacting concrete
    Barros, Joaquim
    Pereira, Eduardo
    Santos, Simao
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2007, 19 (04) : 295 - 304
  • [10] Underwater abrasion of steel fiber-reinforced self-compacting concrete
    Abid, Sallal R.
    Hilo, Ali N.
    Ayoob, Nadheer S.
    Daek, Yasir H.
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2019, 11