Dynamic classifier selection using spectral-spatial information for hyperspectral image classification

被引:21
|
作者
Su, Hongjun [1 ,2 ]
Yong, Bin [1 ]
Du, Peijun [2 ]
Liu, Hao [3 ]
Chen, Chen [4 ]
Liu, Kui [4 ]
机构
[1] Hohai Univ, State Key Lab Hydrol Water Resources & Hydraul En, Nanjing 210098, Jiangsu, Peoples R China
[2] Nanjing Univ, Jiangsu Prov Key Lab Geog Informat Sci & Technol, Nanjing 210046, Jiangsu, Peoples R China
[3] Wuhan Univ, State Key Lab Informat Engn Surveying, Wuhan 430079, Peoples R China
[4] Univ Texas Dallas, Dept Elect Engn, Richardson, TX 75080 USA
来源
基金
中国国家自然科学基金;
关键词
dynamic classifier selection; volumetric textural feature; spectral feature; hyperspectral image classification; LAND-COVER CLASSIFICATION; LEVEL COOCCURRENCE; ACCURACY; FUSION; SYSTEMS;
D O I
10.1117/1.JRS.8.085095
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper presents a dynamic classifier selection approach for hyperspectral image classification, in which both spatial and spectral information are used to determine a pixel's label once the remaining classified pixels' neighborhood meets the threshold. For volumetric texture feature extraction, a volumetric gray level co-occurrence matrix is used; for spectral feature extraction, a minimum estimated abundance covariance-based band selection is used. Two hyperspectral remote sensing datasets, HYDICE Washington DC Mall and AVIRIS Indian Pines, are employed to evaluate the performance of the developed method. The classification accuracies of the two datasets are improved by 1.13% and 4.47%, respectively, compared with the traditional algorithms using spectral information. The experimental results demonstrate that the integration of spectral information with volumetric textural features can improve the classification performance for hyperspectral images. (C) 2014 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Spectral-spatial nearest subspace classifier for hyperspectral image classification
    Toker, Kemal Gurkan
    Yuksel, Seniha Esen
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2022, 43 (06) : 2106 - 2133
  • [2] Hyperspectral image classification using spectral-spatial LSTMs
    Zhou, Feng
    Hang, Renlong
    Liu, Qingshan
    Yuan, Xiaotong
    [J]. NEUROCOMPUTING, 2019, 328 : 39 - 47
  • [3] Hyperspectral Image Classification Using Spectral-Spatial LSTMs
    Zhou, Feng
    Hang, Renlong
    Liu, Qingshan
    Yuan, Xiaotong
    [J]. COMPUTER VISION, PT I, 2017, 771 : 577 - 588
  • [4] Spectral-Spatial Classification of Hyperspectral Image Using Autoencoders
    Lin, Zhouhan
    Chen, Yushi
    Zhao, Xing
    Wang, Gang
    [J]. 2013 9TH INTERNATIONAL CONFERENCE ON INFORMATION, COMMUNICATIONS AND SIGNAL PROCESSING (ICICS), 2013,
  • [5] Spectral-Spatial Response for Hyperspectral Image Classification
    Wei, Yantao
    Zhou, Yicong
    Li, Hong
    [J]. REMOTE SENSING, 2017, 9 (03):
  • [6] Spectral-Spatial Hyperspectral Image Classification using Deep Learning
    Singh, Simranjit
    Kasana, Singara Singh
    [J]. PROCEEDINGS 2019 AMITY INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AICAI), 2019, : 411 - 417
  • [7] Spectral-Spatial Constraint Hyperspectral Image Classification
    Ji, Rongrong
    Gao, Yue
    Hong, Richang
    Liu, Qiong
    Tao, Dacheng
    Li, Xuelong
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (03): : 1811 - 1824
  • [8] COMPOSITE KERNEL CLASSIFICATION USING SPECTRAL-SPATIAL FEATURES AND ABUNDANCE INFORMATION OF HYPERSPECTRAL IMAGE
    Sun, Yanli
    Zhang, Xia
    [J]. 2018 9TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2018,
  • [9] Spectral-Spatial Mamba for Hyperspectral Image Classification
    Huang, Lingbo
    Chen, Yushi
    He, Xin
    [J]. REMOTE SENSING, 2024, 16 (13)
  • [10] Spectral-spatial dynamic graph convolutional network for hyperspectral image classification
    Chen, Rong
    Li, Guanghui
    Dai, Chenglong
    [J]. EARTH SCIENCE INFORMATICS, 2023, 16 (04) : 3679 - 3695